

Volume Rendering of Meteorological Simulation Data

Florian Märkl Technical University of Munich

May 14, 2018

Motivation Lighting

Effects of lighting often serve as visual cues.

 $T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$

$$T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$$
$$\tau(x_0 \leftrightarrow x) = \int_{x_0}^x \kappa_t(y) dy$$

$$T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$$
$$\tau(x_0 \leftrightarrow x) = \int_{x_0}^x \kappa_t(y) dy$$

input from cloud data

пIП

$$T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$$
$$\tau(x_0 \leftrightarrow x) = \int_{x_0}^x \kappa_t(y) \underbrace{dy}_{x_0}$$

awareness of length units necessary!

ice water content variable	Specific_cloud_ice_water_content_hybrid
liquid water effective radius (micron)	10.00
ice water effective radius (micron)	25.00
account for earth's curvature	True
use real vertical scale	True
space scale	1,000
force uniform scale for view	True
additional space scale for view	1,000
 isosurface raycaster 	
bounding box	North Atlantic and Europe
draw bounding box	True True
 isosurface lighting 	

Simple

Direct Illumination through Single Scattering

Direct Illumination through Single Scattering

$$T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$$

Direct Illumination through Single Scattering

Silver Lining

Photo by User:Brosen (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY 2.5 (http://creativecommons.org/licenses/by/2.5)], via Wikimedia Commons $T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$

- Direct Illumination through Single Scattering
- Silver Lining

 $T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$ $p_{HG}(\theta, g) = \frac{1 - g^2}{4\pi (1 + g^2 - 2g\cos\theta)^{1.5}}$

Photo by User:Brosen (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY 2.5 (http://creativecommons.org/licenses/by/2.5)], via Wikimedia Commons

- Direct Illumination through Single Scattering
- Silver Lining
- Powder Effect

Photo by Staff Sgt. Stephany Richards U.S. Department of Defense Current Photos (140807-F-IG195-010) [Public domain], via Wikimedia Commons $T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$ $p_{HG}(\theta, g) = \frac{1 - g^2}{4\pi (1 + g^2 - 2g\cos\theta)^{1.5}}$

- Direct Illumination through Single Scattering
- Silver Lining
- Powder Effect

Photo by Staff Sgt. Stephany Richards U.S. Department of Defense Current Photos (140807-F-IG195-010) [Public domain], via Wikimedia Commons

- Direct Illumination through Single Scattering
- Silver Lining
- Powder Effect

The Scattering $T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$ $p_{HG}(\theta, g) = \frac{1-g^2}{4\pi(1+g^2-2g\cos\theta)^{1.5}}$ Powder $(x_0 \leftrightarrow x) = 1 - e^{-powderDepth * \tau(x_0 \leftrightarrow x)} * powderStrength$

 $T_r(x_0 \leftrightarrow x) = e^{-\tau(x_0 \leftrightarrow x)}$

- Direct Illumination through Single Scattering
- Silver Lining
- $p_{HG}(\theta,g) = \frac{1-g^2}{4\pi(1+g^2-2g\cos\theta)^{1.5}}$ $Powder(x_0 \leftrightarrow x) = 1 - e^{-powderDepth * \tau(x_0 \leftrightarrow x)} * powderStrength$ Powder Effect

$$L_i(x \to \vec{\omega}) = \frac{1}{\kappa_s} Tr(x_0 \leftrightarrow x) Powder(x_0 \leftrightarrow x) p_{HG}(\vec{\omega_l} \to \vec{\omega}, g)$$

powder strength = 1.0, powder depth = 100.0

powder strength = 0.0, powder depth = 100.0

powder strength = 1.0, powder depth = 10.0

powder strength = 1.0, powder depth = 100.0, g = 0.7

Photon Mapping

Photon Mapping

Photon Mapping Woodcock Tracking

Video

Photon Mapping

Video

Photon Mapping

Photon Mapping Results

Upsampling of Photon Map

- Upsampling of Photon Map
- Empty Space Skipping

- Upsampling of Photon Map
- Empty Space Skipping
- Continuous Photon Map Generation

Input Data

- Arbitrary Variable + Transfer Function
- Liquid/Ice Water Content Parameterization
- Lighting Methods
 - Simple
 - Visuals Based
 - Only Single Scattering
 - Photon Mapping
 - More Physically Accurate
 - Multiple Scattering
- Results
 - Visualization of Volumes with user-defined Scaling and Lighting for Visual Cues
 - Rendering of Cloud Data with an Approximation of real Lighting