
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

Volume Rendering of Meteorological
Simulation Data

Florian Märkl

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

Volume Rendering of Meteorological
Simulation Data

Volumen-Rendering von Meteorologischen
Simulationsdaten

Author: Florian Märkl
Supervisor: Prof. Dr. Rüdiger Westermann
Advisor: Dr. Marc Rautenhaus
Submission Date: 16.04.2018

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Florian Märkl Place, Date

Acknowledgments

I want to thank Dr. Marc Rautenhaus for providing the topic as well as giving constant
constructive feedback and advice. In addition, I would like to thank him and all the
other Met.3D contributors for their work and for building this software on an open and
standardized foundation in the form of OpenGL as well as publishing it under a free
software license, thus ensuring that everybody with an interest in using or contributing
to it can do so without any restrictions of proprietary software. Furthermore, I want to
thank Theresa Alina Diefenbach for providing me with the background knowledge for
the conversion from liquid and ice water content to extinction coefficients and aiding
me with my work by providing valuable help.

Abstract

This thesis presents the integration of two different volume lighting methods to be
used for visualization of meteorological simulation data, in particular cloud data,
in Met.3D, an open-source visualization application for meteorological uses. The
first method is primarily a visuals-based approach, which simulates single scattering
and imitates certain visual phenomena appearing in real-world clouds. The second,
while generally requiring more computational effort, is a specific implementation of
the photon mapping algorithm and directly simulates multiple scattering by tracing
photons through the volume. It takes advantage of the Henyey-Greenstein function
in order to be able to only use 3D textures as the data structure of the photon map.
We use our implementations of these methods to produce a number of images and
analyze them with respect to visual outcome, physical accuracy and performance. In
addition, we compare images created with the photon mapping method to results that
were generated using MFASIS, a method to simulate radiative transfer of clouds.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Background 3
2.1. Used Symbols . 3
2.2. Participating Media . 3

2.2.1. Radiative Transfer Equation . 3
2.2.2. Volume Rendering Equation . 5

2.3. Phase Functions . 6
2.3.1. Isotropic Phase Function . 6
2.3.2. Henyey-Greenstein Function . 6

2.4. Single and Multiple Scattering . 7

3. Method 8
3.1. Simple . 8

3.1.1. Single Scattering . 9
3.1.2. Powder Effect . 9
3.1.3. Silver Lining . 11
3.1.4. Full Lighting . 11

3.2. Photon Mapping . 12
3.2.1. Photon Points . 12
3.2.2. Photon Beams . 13
3.2.3. Regular Photon Grid . 14
3.2.4. Woodcock Tracking . 16

4. Implementation 18
4.1. Direct Volume Rendering . 18
4.2. Coordinate System Scaling . 18
4.3. Determining Extinction Coefficients for Liquid and Ice Water Content . 20
4.4. Simple Lighting . 21

4.4.1. Optical Thickness Buffer . 22
4.4.2. Rendering . 23

v

Contents

4.5. Photon Mapping . 24
4.5.1. Pseudo Random Number Generation in GLSL 24
4.5.2. Photon Pass . 25
4.5.3. Rendering . 29

5. Results 30
5.1. Simple . 30

5.1.1. Transfer Function . 30
5.1.2. Liquid and Ice Water Content . 32
5.1.3. Powder Effect . 32
5.1.4. Henyey-Greenstein Component 32
5.1.5. Performance and Effects of Resolution 32
5.1.6. Proposal for the Illustration of a Scientific Publication 35

5.2. Photon Mapping . 37
5.2.1. Effects of Scattering . 37
5.2.2. Real-World Scaling . 40
5.2.3. Comparison with Images Rendered with MFASIS 40
5.2.4. Performance and Effects of Resolution and Photon Count 43

6. Conclusion and Future Work 45

A. Additional Rendered Images 46
A.1. Simple . 46
A.2. Photon Mapping . 48

List of Figures 56

Bibliography 58

vi

1. Introduction

Met.3D [Rau+15; M] is an open-source application for interactive visualization of
meteorological numerical data sets, such as numerical ensemble weather predictions,
developed at the Computer Graphics & Visualization Group in the Department of
Informatics of the Technical University of Munich.

Among other types of visualization, it can display given data as a three-dimensional
volume. Intuitively, such a visualization would seem to be fitting especially for render-
ing clouds, as it has been done in fig. 1.1b. User experience has shown, however, that
the three-dimensional structure of given data is hard to grasp from images produced by
the current volume rendering implementation in Met.3D. As an alternative to volume
rendering, one type of visualization that is commonly used is rendering in the form
of isosurfaces, but these have a limitation in the way that they only display discrete
values.

Since humans, especially when viewing monoscopic imagery, take a majority of
the visual cues they use to perceive three-dimensional structures and relationships
of objects between each other from effects produced by lighting, such as specular
highlights or shadows, adding some sort of lighting to the current volume rendering
implementation would be a logical approach to solve the problem mentioned above.

Out of this motivation, in this thesis we will present the background as well as
implementations of two different types of volume lighting in Met.3D and analyze them
with respect to visual outcome, physical accuracy and performance.

1

1. Introduction

(a) Graphical user interface

(b) Cloud liquid water content visualized as a volume

Figure 1.1.: Screenshots of Met.3D

2

2. Background

2.1. Used Symbols

The following symbols are used throughout this thesis:

L radiance [W m−2 sr−1]
Φ flux [W]
κ extinction, absorption or scattering coefficient [m−1]
τ optical thickness [1]

Tr transmittance [1]
θ angle [rad]

2.2. Participating Media

A participating medium is a medium which affects light that travels through it in some
way. Specific cases include glass, fog, steam, but also clouds. The following section
gives a general overview on light transfer in such a medium.

2.2.1. Radiative Transfer Equation

The radiative transfer equation (RTE) models the change of radiance when light travels
along a direction ~ω through a medium at a point x. For participating media, three
different phenomena have to be taken into account:

(a) Absorption (b) In-Scattering (c) Out-Scattering (d) Emission

Figure 2.1.: The different phenomena modeled by the radiative transfer equation in
participating media

3

2. Background

Absorption

Absorption, as illustrated in fig. 2.1a, describes the process of light energy being
converted to heat energy. The fraction of the incoming energy being absorbed is given
by κa(x), the absorption coefficient at point x. Thus, this is the radiative transfer
equation for pure absorption:

(~ω · ∇)L(x → ~ω) = −κa(x)L(x → ~ω) (2.1)

Scattering

When a photon travels through participating media, it not only moves along a straight
line, but can also be deflected to a different direction a number of times until exiting
the medium. This phenomenon is called scattering. When looking at a specific point x
and direction ~ω in the medium, the effect of scattering can be divided into two separate
terms.

Out-scattering describes the process of radiance from the incoming light along ~ω

being scattered to a different direction and thus not participating in the outgoing light.
The amount of light being scattered at point x is dependent on the scattering coefficient
κs(x).

(~ω · ∇)L(x → ~ω) = −κs(x)L(x → ~ω) (2.2)

In-scattering analogously describes light scattered from all incoming directions to
~ω. The radiance from incoming direction ~ω′ is integrated over all solid angles and
multiplied by the phase function p(~ω′ → ~ω), which gives the distribution of light being
scattered along a certain angle:

(~ω · ∇)L(x → ~ω) = κs(x)Li(x → ~ω)

= κs(x)
∫

Ω4π

p(~ω′ → ~ω)L(x ← ~ω′)dω′
(2.3)

Refer to section 2.3 for more information about phase functions.

Emission

Emission describes light being emitted by the medium itself. It is given by the source
function Q(x → ~ω) which gives the emitted radiance at point x into direction ~ω:

(~ω · ∇)L(x → ~ω) = Q(x → ~ω) (2.4)

4

2. Background

Full Radiative Transfer Equation

Taking into account all four phenomena, the complete radiative transfer equation for
participating media can be formulated:

(~ω · ∇)L(x → ~ω) =− κa(x)L(x → ~ω)

− κs(x)L(x → ~ω)

+ κs(x)
∫

Ω4π

p(~ω′ → ~ω)L(x ← ~ω′)d~ω′

+ Q(x → ~ω)

(2.5)

Extinction

The part of the RTE reducing the radiance by a factor is called extinction. In the
case of participating media, the two phenomena contributing to it are absorption and
out-scattering, thus the so-called extinction coefficient κt is the sum of their coefficients:

κt = κa + κs (2.6)

The RTE for pure extinction is then formulated as follows:

(~ω · ∇)L(x → ~ω) = −κt(x)L(x → ~ω) (2.7)

2.2.2. Volume Rendering Equation

Given a medium with pure extinction, it is possible to calculate the attenuation of
radiance from one point x0 to another point x.

In a first step, the extinction coefficient needs to be integrated over the distance
between the two points:

τ(x0 ↔ x) =
∫ x

x0

κt(y)dy (2.8)

This term is referred to as optical thickness or optical depth. In a homogeneous
medium, the calculation can be reduced to a single multiplication with the distance:

τ(x0 ↔ x) = κt|x− x0| (2.9)

From optical thickness, a factor for the attenuation of radiance, called transmittance,
can be calculated using Beer’s Law:

Tr(x0 ↔ x) = e−τ(x0↔x) (2.10)

And thus, the incoming radiance at point x with ~ω being the normalized direction
from x0 to x is defined as:

5

2. Background

L(x ← ~ω) = Tr(x0 ↔ x)L(x → ~ω) (2.11)

Also adding in-scattering and emission to the term yields the full volume rendering
equation:

L(x ← ~ω) = Tr(x0 ↔ x)L(x → ~ω)

+
∫ x

x0

Tr(y↔ x)Q(y→ ~ω)dy

+
∫ x

x0

Tr(y↔ x)κs(y)Li(y→ ~ω)dy

(2.12)

2.3. Phase Functions

As mentioned, when scattered, a light ray changes its direction. The distribution of
scattered light is described by the phase function p(~ω0 → ~ω), which gives the amount
being scattered from direction ~ω0 to ~ω, also commonly used in the form p(θ), given
the angle θ between the two directions.

In order to describe a valid distribution, i.e. one that outputs the exact amount of
light that is put into it, the phase function integrated over the whole sphere must
evaluate to 1: ∫

Ω4π

p(θ)dθ = 1 (2.13)

2.3.1. Isotropic Phase Function

If light is scattered to all directions equally, the scattering is referred to as isotropic
scattering, as opposed to anisotropic scattering. In such a case, the phase function
must be a constant value. In order to satisfy eq. (2.13), this value is 1

4π :

p(θ) =
1

4π
(2.14)

∫
Ω4π

p(θ)dθ =
∫

Ω4π

1
4π

dθ = 1 (2.15)

2.3.2. Henyey-Greenstein Function

The Henyey-Greenstein function is a phase function that, given a parameter g ∈ [−1, 1],
can represent back scattering, forward scattering or isotropic scattering. It is defined as

pHG(θ, g) =
1− g2

4π(1 + g2 − 2g cos θ)1.5 (2.16)

6

2. Background

0 0.15 0.3
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

(a) g = −0.3

0 0.15 0.3
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

(b) g = 0

0 2.0 4.0
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

(c) g = 0.8

Figure 2.2.: Henyey-Greenstein phase function for different values of g, ranging from
back scattering (fig. 2.2a) through isotropic (fig. 2.2b) to almost pure forward
scattering (fig. 2.2c). Note the different scaling in fig. 2.2c.

(a) Single scattering (b) Multiple scattering

Figure 2.3.: Illustrations of single and multiple scattering

The asymmetry factor g determines the characteristic of the phase function. Negative
values result in backwards-oriented scattering, positive in forward-oriented scattering
and with a value of 0, the function collapses to a constant value of 1

4π , representing
isotropic scattering as described above. The plotted function for different values of g
can be seen in fig. 2.2.

2.4. Single and Multiple Scattering

When simulating scattering, a distinction is often made between single and multiple
scattering. Single scattering, as illustrated in fig. 2.3a, describes a ray of light coming
directly from the light source being scattered exactly once at a single point, then keeping
the scattered direction. Multiple scattering, which is illustrated in fig. 2.3b, allows an
arbitrary amount of scattering events to occur until the ray obtains its final direction.

7

3. Method

We present two different methods for volumetric lighting of cloud data. The first is
henceforth referred to as the "simple" method while the second is called the "photon
mapping" method.

3.1. Simple

Figure 3.1.: A cloudscape in Horizon Zero Dawn. Screenshot of the final game taken
on a Playstation 4.

The first method is based on the approach presented by Guerrilla Games as part of a
talk at SIGGRAPH 2015 [SV15], which was used in their game "Horizon Zero Dawn".
Because of the intended use in a game, it does not primarily attempt to be physically
accurate. Instead, a number of visual phenomena observed in real world clouds are
replicated:

• direct illumination through single scattering

8

3. Method

Figure 3.2.: Silver lining when looking at clouds in direction of the sun. One of
the phenomena replicated by our simple lighting method. Photo by
User:Brosen (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html),
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY
2.5 (http://creativecommons.org/licenses/by/2.5)], via Wikimedia Com-
mons

• silver lining, see fig. 3.2.

• dark edges, see fig. 3.3.

3.1.1. Single Scattering

In order to determine the amount of light that may be scattered directly towards the
camera, Beer’s Law is used to calculate the transmittance from the light source to a
point x in the volume with equation eq. (2.10).

3.1.2. Powder Effect

The observed dark edges, henceforth referred to as the powder effect, are a result of
multiple scattering inside the clouds. The idea is that at a point x in an area with less
dense cloud material, there will be less material from which light could be scattered
towards x and thus less in-scattering can be observed. This is illustrated in fig. 3.4.
In an application where multiple scattering is directly simulated, this effect would
automatically be replicated.

9

3. Method

Figure 3.3.: Dark edges of clouds, here referred to as the powder effect. One of the
phenomena replicated by our simple lighting method. Photo by Staff Sgt.
Stephany Richards U.S. Department of Defense Current Photos (140807-F-
IG195-010) [Public domain], via Wikimedia Commons

However, because such an implementation may be impractical to be used in games
as the result of a high performance penalty, [SV15] introduces an additional formula:

Powder(x0 ↔ x) = 1− e−powderDepth∗τ(x0↔x) ∗ powderStrength (3.1)

The variable powderDepth influences how deep into the cloud the visual effect should
reach, i.e. whether only a thin border should be darkened or a larger portion, while
powderStrength is a factor to adjust the effect to the desired intensity. In the original
form as part of [SV15], powderDepth is a fixed value of 2 while powderStrength is exactly
1.

Figure 3.4.: Illustration of the powder effect. At positions with denser surrounding
cloud material, a greater amount of in-scattering is observed.

10

3. Method

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

optical thickness τ

at
te

nu
at

io
n

fa
ct

or
of

lig
ht

en
er

gy Beer = e−τ

Powder = 1− e−τ∗2

Beer ∗ Powder

Figure 3.5.: Plot of the Beer and powder functions as well as the combination of both.
Beer calculates the transmittance through optical depth τ, powder attenu-
ates areas with low optical thickness from the light, resulting in darkened
cloud edges.

The powder term is then directly multiplied to the transmittance calculated using
Beer’s Law. The resulting function is visualized in fig. 3.5.

3.1.3. Silver Lining

The silver lining effect, as shown in fig. 3.2 appears when the view direction approaches
the direction opposite to the light direction. To simulate this behaviour, the Henyey-
Greenstein function is used with a value of g > 0, which results in a forward-oriented
distribution as seen in fig. 2.2c.

3.1.4. Full Lighting

Putting all the terms together results in the following estimation of in-scattered radiance
at a point x in direction ~ω, given the light direction ~ωl and the medium boundary
position x0:

Li(x → ~ω) =
1
κs

Tr(x0 ↔ x)Powder(x0 ↔ x)pHG(~ωl → ~ω, g) (3.2)

11

3. Method

3.2. Photon Mapping

Photon Mapping is a two-pass method that can be used to simulate single and multiple
scattering in participating media. In the first pass, photons are shot from the light
source, traced through the medium and stored in a data structure. Using the obtained
data, the volume can then be rendered with lighting in the second pass.

3.2.1. Photon Points

This is the original photon mapping algorithm, which was introduced by Jensen et
al. [JC98] and uses so-called photon points stored throughout the medium.

Photon Pass

Depending on the light sources in the scene, a number of photons are created and
traced through the medium, each carrying a certain flux Φp, starting at a position xp

with a direction ~ωp.
The probability that a photon interacts with the medium, i.e. being scattered or

absorbed, after travelling a distance d is given by the probability density function
derived from Beer’s Law:

pdf (xp → ~ωp, d) = 1− e−τ(xp↔(xp+d ~ωp)) (3.3)

In a homogeneous medium, this can be simplified to:

pdf (d) = 1− e−κtd (3.4)

From this equation, it is possible to derive a formula to generate values with this
probability distribution:

d =
log(1− ξ)

−κt
(3.5)

where ξ ∈ [0, 1) is a uniformly distributed random value. This is used to generate the
distance until the next interaction event in the medium. Whether this event is scattering
or absorption is determined using Russian roulette. If the event is determined to be
scattering, the new photon direction can obtained by importance sampling of the phase
function.

In both cases, the photon is stored as a compound of the event position, its flux and
direction in the photon map.

12

3. Method

(a) Photon Points (b) Photon Beams

Figure 3.6.: Illustration of the difference between querying photon points and photon
beams.

Rendering Pass

After the photon map has been generated, the radiance at a point x can be estimated
from it. Therefor, a query volume R, for example a sphere with radius r, around x is
chosen, from which photons will be taken into account.

The in-scattering radiance is computed as:

Li(x → ~ω) =
1

κs ∗ µR
∑
p∈R

p(~ωp → ~ω)Φp (3.6)

with µR being the volume of R, for example 4
3 πr3 in the case of a sphere. This query is

illustrated in fig. 3.6a.

3.2.2. Photon Beams

Jarosz et al. [Jar+11] extend the photon mapping technique by introducing photon
beams.

Photon Pass

When tracing a photon, instead of calculating the distance to the next interaction event
and only storing the photon there, the flux is distributed in smaller steps along a
complete beam. For simplicity, we will temporarily assume a homogeneous medium
and use a fixed step size ∆t. Given a start position xb, start flux Φb and a direction ~ωb,
the flux for each deposited photon at xt is calculated as:

Φpb = κsTr(xb ↔ xt)Φb∆t (3.7)

The collection of these photons is called a single discrete photon beam. This beam is
traced through the entire medium.

The simulation of multiple scattering works very similarly to the original photon
tracing method. For each photon beam, a distance to the next interaction event is

13

3. Method

chosen, as in eq. (3.5), the scattering direction is calculated and a new photon beam is
started at the interaction position with its flux calculated as:

Φb1 =
κs

κt
Φb0 (3.8)

Rendering Pass

Estimating the radiance from the photon map is again similar to the photon point
method. Given the query volume R, all beams intersecting it are chosen and stored
photons from these accumulated:

Li(x → ~w) =
1

κs ∗ µR
∑
b∈R

∑
pb∈R

p(θpb)Φpb (3.9)

In practice, it is not necessary to know which stored photons belong to which discrete
photon beam as long as the their positions are known to determine whether they lie in
R. Then, this formula will be the same as eq. (3.6).

3.2.3. Regular Photon Grid

Until now, we have assumed the photon map to be an abstract data structure that
stores photons with their respective position, direction and flux and can be queried for
photons positioned in a given volume. One concrete data structure commonly used for
this task is a k-d tree. However, such a structure would be less suited for the highly
parallel implementation we are aiming for, for example because of the complexity of
the memory layout of such a structure.

As an alternative, Elek et al. [Ele+12] present a way to store photons in a regular grid
of only two values per cell, which, in practice, could be easily implemented as a 3D
texture. The idea is that the first value is simply the sum of flux in the cell, while the
second value represents the directions of the photons.

Henyey-Greenstein Basis

In order to be able to represent the directions of multiple photons by a single value, Elek
et al. [Ele+12] make use of the characteristics of the Henyey-Greenstein function
depending on its asymmetry factor g, as well as the precondition that a single global
directional light source that is responsible for the majority of lighting in the scene, for
example the sun, is present.

Every cell in the grid, in addition to the flux, stores a value called the anisotropy
coefficient, which models the distribution of light outgoing from this cell with respect
to the direction of the global light source. This is illustrated in fig. 3.7.

14

3. Method

Figure 3.7.: Illustration the anisotropy coefficients saved in the regular grid photon map.
In the upper cells, only little incoming light from scattering events is present.
Thus, the saved anisotropy coefficient yields a strong forward-oriented light
distribution with respect to the global light direction. Further down inside
the volume, more light scattered from other directions is encountered, so
the saved values approach a more isotropic distribution.

The actual value of the anisotropy coefficient g′ is simply the average cosine of the
angle between the directions of all photons stored in the cell represented by volume R
and the global light direction ~ωl .

g′(R) =
1

|p ∈ R| ∑
p∈R

~ωp · ~ωl (3.10)

Reconstruction of In-scattered Radiance

In order to render the volume from a camera direction, we need to be able to estimate
the in-scattered radiance at any point x in direction ~ω. Recall the formula for photon
points (eq. (3.6)):

Li(x → ~ω) =
1

κs ∗ µR
∑
p∈R

p(~ωp → ~ω)Φp (3.11)

Ignoring the photon directions for a moment, adapting the calculation of total
radiance from our regular grid is easy. As R, we simply choose the volume of a single
grid cell and µR is calculated accordingly. The sum of flux can directly be taken from
the grid and it is even possible to use interpolation to sample at positions other than
the cell centers. Thus, the equation is simplified to:

Li(x → ~ω) =
1

κs ∗ µR
Φtotal(R) ∗ distribution(R→ ~ω) (3.12)

15

3. Method

with distribution(R) modelling the distribution of Φtotal(R) to ~ω. Elek et al. [Ele+12]
showed that, given the single major directional light source, this distribution can be
estimated from the saved anisotropy coefficient by altering the asymmetry factor of the
Henyey-Greenstein function:

distribution(R) = pHG(~ωl → ~ω, g ∗ g′(R)) (3.13)

3.2.4. Woodcock Tracking

So far, we have only seen how to generate the distance to the next interaction event
in a homogeneous medium, using eq. (3.5). One way to approximate this distance
for a heterogeneous medium is to use a technique called Woodcock tracking or delta
tracking as originally introduced by Woodcock et al. [Woo+65]. The idea is to first
determine κt,max, the maximum value for the extinction coefficient anywhere in the
medium.

When using the photon beams approach, at each step taken for a beam, we first
assume the medium has this maximum extinction coefficient everywhere. We replace
the fixed value for the step size ∆t in eq. (3.7) with a random distance to an interaction
event using eq. (3.5):

∆t =
log(1− ξ)

−κt,max
(3.14)

Next, we move the photon to the destination position x′ and store it there. Then, the
actual extinction coefficient is sampled and it is probabilistically decided whether a
scattering event occurs at this position or not using the following probability:

P =
κt(x′)
κt,max

(3.15)

If this determines that an actual event occurs, we call this a real scattering event,
otherwise we call it a virtual scattering event. For a real scattering event we continue
tracking and saving the rest of the current beam, as well as emit a new one at x′, just
like in section 3.2.2. A concrete example on how this works is illustrated in fig. 3.8.

16

3. Method

virtual scattering event
real scattering event
photon storing

Figure 3.8.: Photon Beams combined with Woodcock Tracking. Random step sizes are
used for tracking the beams. At each step, it is determined whether a
scattering event occurs and if that is the case, a new beam is emitted.

17

4. Implementation

We now implement both the simple and the photon mapping method described
in chapter 3 as additions to Met.3D. The program, which is free and open-source
software available under the GNU General Public License v3, is written in C++ using
Qt as a GUI toolkit and OpenGL 4 compatibility profile with preprocessed GLSL from
GLFX for rendering. It is organized in so-called actors, which can be added to a scene
and are each responsible for rendering a specific kind of object or data visualization
inside of it. For example, there exist actors for rendering a bounding box, a base map
or a cross-section of a given three-dimensional data field.

Our Volume Lighting methods build upon the "Volume Raycaster" actor, which can be
used to render three-dimensional data as isosurfaces, but also supports direct volume
rendering through raycasting.

4.1. Direct Volume Rendering

The direct volume rendering in Met.3D works as follows: The faces of the bounding
box around the volume are rendered using the standard OpenGL rasterization pipeline.
In the fragment shader, the color that would be seen from the camera at this surface
position is calculated. Therefor, a ray starting at the fragment position in world space
and going along the camera direction is traced through the volume.

In each step, the data at the current position is sampled and mapped to a color value
as well as an extinction coefficient. This mapping can for example be defined by using
a transfer function. With the extinction coefficient, Beer’s Law is used with the step
size to calculate the transmittance of the current step, which is then used as an alpha
value in addition to the color. The resulting RGBA colors of all steps are continuously
blended together using front-to-back blending.

This produces an image as seen in fig. 4.1.

4.2. Coordinate System Scaling

For rendering a scene, the world coordinate system used in Met.3D is a right-handed
coordinate system oriented such that x and y form the ground plane and z is the
vertical axis. The values for x and y coordinates are longitude and latitude measured in
degrees. The z axis does not directly correspond to any physical unit, but instead the
data is scaled by a user-adjustable factor.

18

4. Implementation

Figure 4.1.: Three-dimensional data rendered without any lighting using DVR and a
transfer function in Met.3D.

In order to correctly calculate optical thickness, one has to be aware of the physical
units used for distances. Thus, we implement a conversion from world coordinates to
meters:

#define EARTH_PERIMETER_METERS 40030173.0

uniform float spaceScale;

uniform bool earthCosineEnabled;

uniform float worldZMeterScale;

vec2 lonLatToMeters(vec2 lonLat)

{

vec2 ret = vec2(

(lonLat.x / 360.0) * EARTH_PERIMETER_METERS,

(lonLat.y / 360.0) * EARTH_PERIMETER_METERS

) * spaceScale;

if(earthCosineEnabled)

{

ret.x *= cos(lonLat.y * M_PI / 180.0);

}

return ret;

}

float worldZToMeters(float z)

{

19

4. Implementation

return z * worldZMeterScale * spaceScale;

}

Converting latitude to the distance from the equator in meters is done simply by
scaling it accordingly. For longitude, we also have to account for the fact that the
actual distance corresponding to a fixed difference in degrees scales with the cosine
of latitude. The z coordinate is scaled by worldZMeterScale, which is a factor that has
been pre-calculated for the user-defined vertical scaling. The user can select whether to
use a realistic vertical scaling derived from pressure altitude or simply the same scaling
as used for latitude and longitude, which is not realistic but ensures the same scaling
for all axes.

Using the earthCosineEnabled flag, we enable the user to disable the cosine effect for
longitude, so it is also possible to get a uniform scaling if explicitly wanted. Similarly,
we provide the parameter spaceScale to add an additional scaling to the whole space.
For only altering the effects on the rendered image without affecting lighting calculation,
there is also a parameter for using the vertical scale for all axes, as well as another
spaceScale parameter, which only affects the final volume rendering. This way we can
base our calculations on real physical units while still being able to manually control the
scaling as desired and being explicit about where such an unnatural scaling happens.

4.3. Determining Extinction Coefficients for Liquid and Ice
Water Content

As mentioned above, the extinction coefficients used for rendering and lighting can be
defined by the user when using a transfer function that maps values from a single data
variable accordingly. However, cloud data is not commonly available as a single variable
that directly maps to the real-world extinction coefficient. Instead, the representation in
data we will be using is split up in liquid water content LWC and ice water content
IWC, giving the amount of liquid or ice water for per an amount of air. Henceforth, we
will use the unit [kg kg−1] for both variables, meaning the mass of water or ice in [kg]
per 1 kg of air.

For LWC, Hu et al. describe a parameterization that can be used to derive the
extinction coefficient [HS93]. The formula we will use is:

κt,LWC[m−1] =
3
2

LWC[kg kg−1] ∗ ρair[kg m−3]

ρwater[kg m−3] ∗ reffective,LWC[m]
(4.1)

with ρair ≈ 1.225 kg m−3 being the density of air, ρwater ≈ 1000 kg m−3 the density of
water and reffective,LWC the so-called mean effective radius, a weighted mean of the size
distribution of droplets.

Similarly, a formula for IWC exists, as described by Fu [Fu96]:

20

4. Implementation

κt,LWC[m−1] =
4 ∗
√

3
3

IWC[kg kg−1] ∗ ρair[kg m−3]

ρice[kg m−3] ∗ reffective,IWC[m]
(4.2)

analogous, with ρice ≈ 917 kg m−3 being the density of ice and reffective,IWC the effective
radius for ice droplets.

We use constant values for all required densities and let the effective radii be user-
configurable values in [µm], so they have to be divided by a factor of 1000000 to
be converted to meters. The resulting GLSL code, using input data that is already
converted to [kg m−3], is the following:

uniform float effectiveRadiusLWCum;

uniform float effectiveRadiusIWCum;

float computeLWCExtinctionCoefficient(float lwcKgPerM3)

{

float effectiveRadiusMeter = effectiveRadiusLWCum / 1000000.0;

float densityOfWaterKgPerM3 = 1000.0;

return 1.5 * lwcKgPerM3

/ (densityOfWaterKgPerM3 * effectiveRadiusMeter);

}

float computeIWCExtinctionCoefficient(float iwcKgPerM3)

{

float effectiveRadiusMeter = effectiveRadiusIWCum / 1000000.0;

float densityOfIceKgPerM3 = 917.0;

return (4.0 * sqrt(3.0) / 3.0) * iwcKgPerM3

/ (densityOfIceKgPerM3 * effectiveRadiusMeter);

}

Because in clouds, there is almost no absorption, but nearly pure scattering, we will
assume κt = κs in this implementation.

4.4. Simple Lighting

In order to implement the simple lighting method described in section 3.1, we restrict
the light direction to always be exactly (0, 0,−1) in world space, i.e. along the vertical
axis. This assumption gives us some major advantages when implementing the method
as seen hereafter.

21

4. Implementation

4.4.1. Optical Thickness Buffer

We create an additional 3D texture with a user-defined resolution carrying a single
32-bit float component. This texture is uniformly mapped to the bounding box used
for rendering the volume and will contain the total optical thickness between the
light source and the respective position. The z texture coordinate is oriented so that
0 corresponds to the top position and the maximum value is at the bottom in world
space.

The calculation of the optical thickness to be saved in a cell with coordinate (x, y, z)
is the integration of the extinction coefficient from the light source. Because of our fixed
light direction, this calculation can also be done recursively:

τ(x, y, z) = τ(x, y, z− 1) +
∫ (x,y,z)

(x,y,z−1)
κt(y)dy (4.3)

We approximate the integral by sampling the extinction coefficient at (x, y, z) and
multiplying it with the vertical distance between the two cells in meters.

Thus, we can implement the creation of the whole texture as multiple parallel
processes, one for each (x, y) coordinate, iteratively calculating the value for each z
coordinate. We do this using a compute shader with the following (simplified) GLSL
code:

layout(r32f, binding = 0) uniform image3D lightingMapOut;

shader CSSimpleLighting()

{

float stepSizeMeters = // ...

ivec3 texelCoord = ivec3(gl_GlobalInvocationID.xy, 0);

float currentOpticalThickness = 0.0;

while(texelCoord.z < size.z)

{

vec3 worldPos = getLightingWorldPositionFromTexelCoord(texelCoord);

float extCoeff = sampleExtinctionCoefficient(worldPos);

currentOpticalThickness += stepSizeMeters * extCoeff;

imageStore(lightingMapOut, texelCoord, vec4(

currentOpticalThickness, vec3(0.0)));

texelCoord.z++;

22

4. Implementation

}

}

gl_GlobalInvocationID.xy carries the x and y coordinates to be used. Because each
invocation of this compute shader works on its very own part of the texture, we can use
imageStore() to save the values here without the need for any kind of synchronization.

4.4.2. Rendering

We integrate the lighting method into the volume renderer by replacing the color fetched
from the transfer function by an estimation of radiance as described in section 3.1.4:

uniform float volumeLightingIntensity;

uniform float volumeLightingAmbient;

uniform float volumeLightingHenyeyGreensteinG;

uniform float volumeLightingPowderStrength;

uniform float volumeLightingPowderDepth;

vec3 volumeLightingAtPos(vec3 rayDir, vec3 pos)

{

float opticalThickness = sampleLightingVolumeAtPos(pos);

float beer = exp(-opticalThickness);

float powder =

1.0 - exp(-volumeLightingPowderDepth * opticalThickness)

* volumeLightingPowderStrength;

float lightCos = dot(-rayDir, vec3(0.0, 0.0, -1.0));

float hg = calculateHenyeyGreensteinCos(lightCos,

volumeLightingHenyeyGreensteinG);

float lightingValue = 2.0 * beer * clamp(powder, 0.0, 1.0) * hg;

return vec3(lightingValue * volumeLightingIntensity +

volumeLightingAmbient);

}

volumeLightingAmbient is an additional user-defined factor that can be used to add
an additional ambient lighting component.

23

4. Implementation

4.5. Photon Mapping

In our implementation, we use the regular grid photon map described in section 3.2.3
in combination with photon beams (section 3.2.2) and Woodcock tracking (section 3.2.4)
as proposed by Elek et al. [Ele+12] and implement the tracing of photons in compute
shaders. Because in the photon pass, we do not only trace photons along the exact light
direction, the fixed light direction as used for our simple method loses the advantages
described above and we can instead allow an arbitrary light direction.

4.5.1. Pseudo Random Number Generation in GLSL

Because this method requires the generation of random numbers, we need to implement
a pseudo random number generator in GLSL that reliably generates uniformly dis-
tributed values. We use the approach proposed by Howes et al., which is a combination
of a combined Tausworthe generator and a linear congruential generator [HT07]:

uint rand_z1, rand_z2, rand_z3, rand_z4;

uint randTausStep(inout uint z, int S1, int S2, int S3, uint M)

{

uint b = ((z << S1) ^ z) >> S2;

return z = ((z & M) << S3) ^ b;

}

uint randLCGStep(inout uint z, uint A, uint C)

{

return z = A*z + C;

}

float randHybridTaus()

{

return 2.3283064365387e-10 * float(

randTausStep(rand_z1, 13, 19, 12, 4294967294U) ^

randTausStep(rand_z2, 2, 25, 4, 4294967288U) ^

randTausStep(rand_z3, 3, 11, 17, 4294967280U) ^

randLCGStep(rand_z4, 1664525, 1013904223U)

);

}

For setting the initial values of rand_z1, rand_z2, rand_z3 and rand_z4, we use the
approach by Mohanty et al. [MMC12] with an unsigned integer value as the seed,
which could for example be the invocation id of a compute shader:

void randSetSeed(uint seed)

24

4. Implementation

{

rand_z1 = seed * 1099087573U;

rand_z2 = rand_z1 * 1099087573U;

rand_z3 = rand_z2 * 1099087573U;

rand_z4 = rand_z3 * 1099087573U;

}

4.5.2. Photon Pass

For the regular grid photon map, we create a 3D texture carrying two 32-bit float
components for the total flux and anisotropy coefficient. To build this map, we use a
compute shader that traces one photon in each invocation. Unfortunately, as mentioned
before, we do not know beforehand where each invocation will store values in the
texture and multiple invocations might also write to the same location. Thus, it is
necessary to synchronize the write access to the texture. Therefor, we use OpenGL’s
atomic image operations, in particular imageAtomicAdd(). This imposes a severe
limitation on the image we write to, namely the restriction that the image can only be
of the format GL_R32I or GL_R32UI. Another issue is that we can not directly compute
the average value for the anisotropy coefficient by only storing the values one after
another.

In order to still generate the desired two-component float texture, we split the
generation of the map into two passes: We create three additional 32-bit integer textures
for total photon flux, the sum of all anisotropy coefficients and the number of photons
stored in the cell. We use the contents of these textures as fixed-point values and run
the tracing compute shader on them. In the second pass, we convert the textures to
our desired format. This is again done by a compute shader, which, in each invocation,
divides the total anisotropy coefficient by the photon count and stores the resulting
value along with the total flux in the destination texture.

Tracing Photons

In the tracing compute shader, we first define a struct to store the state of a photon:

struct PhotonState

{

vec3 posMeters;

vec3 posWorld;

vec3 dirMeters;

float flux;

};

25

4. Implementation

We will use posWorld to find the respective destination coordinates in the photon
map as well as sampling the input data while posMeters and dirMeters are used for
the actual lighting calculations. The two positions will be kept in sync.

The following function is used to store such a photon, as part of a photon beam, in
the map:

const float PHOTON_MAP_NORMALIZATION_VALUE = 128.0;

uniform vec3 volumeLightingDirection;

layout(r32ui, binding = 0) uniform uimage3D photonFluxMapOut;

layout(r32i, binding = 1) uniform iimage3D photonCosineMapOut;

layout(r32ui, binding = 2) uniform uimage3D photonCountMapOut;

void depositPhoton(PhotonState photon, float stepDistMeters)

{

vec3 dirWorld = normalize(photon.posWorld

- metersToWorldPos(photon.posMeters + photon.dirMeters));

float photonCosine = dot(volumeLightingDirection, dirWorld);

float cosineValue = photonCosine * PHOTON_MAP_NORMALIZATION_VALUE;

float fluxValue = photon.flux * PHOTON_MAP_NORMALIZATION_VALUE *

stepDistMeters;

ivec3 coord = getLightingTexelCoordFromWorldPos(photon.posWorld);

imageAtomicAdd(photonFluxMapOut, coord, uint(fluxValue));

imageAtomicAdd(photonCosineMapOut, coord, int(cosineValue));

imageAtomicAdd(photonCountMapOut, coord, uint(1));

}

The Woodcock tracking method is implemented as one function that moves the
photon for a single step and samples the extinction coefficient at the destination and
another function that also evaluates whether a real scattering event occurs:

void woodcockStepVirtual(inout PhotonState photon, in float maxExtCoeff,

out float currentExtCoeff, out float distMeters)

{

distMeters = -log(1.0 - randHybridTaus()) / maxExtCoeff;

photon.posMeters += photon.dirMeters * distMeters;

photon.posWorld = metersToWorldPos(photon.posMeters);

currentExtCoeff = sampleExtinctionCoefficient(photon.posWorld);

}

26

4. Implementation

bool woodcockStepComplete(inout PhotonState photon, in float maxExtCoeff,

out float currentExtCoeff, out float distMeters)

{

woodcockStepVirtual(photon, maxExtCoeff, currentExtCoeff, distMeters);

if(currentExtCoeff > 0.0)

return randHybridTaus() < currentExtCoeff / maxExtCoeff;

else

return false;

}

To randomly choose a scattering direction with the distribution given by the Henyey-
Greenstein function, we use the formula explained in [Har] as part of the following
function, which generates a cosine for the scattering direction given a random value r

and the asymmetry factor for the Henyey-Greenstein function:

float sampleHenyeyGreenstein(float r, float g)

{

float a = (1.0 - g*g) / (1.0 + g * (2.0*r - 1.0));

return (1.0 / (2.0 * g)) * (1.0 + g*g - a*a);

}

The compute shader is then implemented as the following code:

#define PHOTON_FLUX_THRESHOLD 0.01;

uniform float volumeLightingMaxExtinctionCoeff;

shader CSPhoton()

{

randSetSeed(gl_GlobalInvocationID.x);

PhotonState photon;

photon.posWorld = randomPhotonEntry();

photon.posMeters = worldPosToMeters(photon.posWorld);

photon.dirMeters = normalize(worldPosToMeters(photon.posWorld +

volumeLightingDirection) - photon.posMeters);

photon.flux = 1.0;

while(positionInLightingVolume(photon.posWorld))

{

float distMeters;

float extCoeff;

bool realScatterEvent = woodcockStepComplete(photon,

27

4. Implementation

volumeLightingMaxExtinctionCoeff, extCoeff, distMeters);

photon.flux *= transmittance(distMeters, extCoeff);

depositPhoton(photon, distMeters);

if(realScatterEvent)

{

trackRestPhotonBeam(photon);

photon.flux = 1.0;

float scatterCos = sampleHenyeyGreenstein(randHybridTaus(),

volumeLightingHenyeyGreensteinG);

photon.dirMeters = scatterDirection(photon.dirMeters,

scatterCos);

}

if(photon.flux < PHOTON_FLUX_THRESHOLD)

break;

}

}

We continuously step along the current photon beam using Woodcock tracking until
a real scattering event occurs. In this case, the rest of the current beam is first traced and
saved to the map, then a new beam is emitted at the scattering location with the flux
being reset and the scattering direction calculated using sampleHenyeyGreenstein().

The function trackRestPhotonBeam() essentially performs the same tracing, but
without generating real scattering events:

void trackRestPhotonBeam(in PhotonState photon)

{

while(positionInLightingVolume(photon.posWorld))

{

float distMeters;

float extCoeff;

woodcockStepVirtual(photon, volumeLightingMaxExtinctionCoeff,

extCoeff, distMeters);

if(extCoeff >= 0.0)

photon.flux *= transmittance(distMeters, extCoeff);

depositPhoton(photon, maxExtCoeff);

28

4. Implementation

if(photon.flux < PHOTON_FLUX_THRESHOLD)

break;

}

}

The initial flux of the photon depends on a number of factors, such as the power of
the light source and the number of emitted photons in order to keep the total amount
of flux of all photons constant for a varying number of photons, however all these
aspects can be combined into a single multiplication. Instead of applying these factors
in the tracing shader, we simply start with a flux of 1 and postpone the scaling to the
estimation of radiance later. This is a great benefit for our implementation, because,
since we use fixed-point values in the temporary textures, the precision of the values in
these maps is more predictable.

In addition, a tiny threshold PHOTON_FLUX_THRESHOLD is used to stop tracing the
beam, as proposed in [Ele+12].

4.5.3. Rendering

When actually rendering the volume, the following function is used to estimate the
radiance:

uniform float volumeLightingIntensity;

uniform vec3 volumeLightingDirection;

uniform float volumeLightingHenyeyGreensteinG;

vec3 volumeLightingAtPos(vec3 rayDir, vec3 pos)

{

float lightingValue = samplePhotonMapAtPos(pos).r;

float cosine = samplePhotonMapAtPos(pos).g;

lightingValue /= getLightingTexelVolumeInMetersAtWorldPos(pos);

float lightCos = dot(-rayDir, volumeLightingDirection);

lightingValue *= calculateHenyeyGreensteinCos(lightCos,

cosine * volumeLightingHenyeyGreensteinG);

lightingValue *= volumeLightingIntensity;

return vec3(lightingValue + volumeLightingAmbient);

}

At this point, volumeLightingIntensity is already divided by the total number of
photons and gives the actual amount of flux emitted for each photon. The photon map
is sampled and the radiance is then estimated just as descibed in eq. (3.12).

29

5. Results

We will now present a number of images rendered in Met.3D using our methods and
examine the visual outcome as well as measure performance.

All examples were executed on Arch Linux with an Intel Core i7 4790k CPU, 16GB
of RAM and an NVIDIA GeForce GTX 1080. Time measurements were taken using
gettimeofday() with an invocation of glFinish() before and after each measured
process on the GPU. This ensures all GPU work issued by calls before starting the
work that is of interest has been finished before starting to measure time as well as
that all work that should be measured has already finished when stopping to measure
time. While this explicit synchronization of CPU and GPU may in practice lead to parts
of the GPU’s resources to be unused while they could be used without the calls to
glFinish(), thus leading to more total time taken for the complete work, it does ensure
that what is measured is exactly the time taken for the work that we are interested in.

5.1. Simple

5.1.1. Transfer Function

Figure 5.1 shows an image rendered using data from the ECMWF Ensemble Prediction
System (ENS), specifically a prediction of the fraction of cloud cover on Mo. 2012-10-15
00:00 UTC. The original data, which gives the fraction of the respective grid cell that is
covered by clouds as values from 0 to 1, is mapped to both a color and a value for the
extinction coefficient using a transfer function. Lighting is applied in addition to the
mapped color using our simple method and the mapped extinction coefficient. The
settings used are the following:

account for earth’s curvature Off
use real vertical scale Off

space scale 0.001
intensity 7.0
ambient 0.0

density scale 0.003
powder strength 1.0

powder depth 100.0
Henyey-Greenstein g 0.0

map resolution (x, y, z) 256x128x128

30

5. Results

Figure 5.1.: Fraction of cloud cover directly mapped to the extinction coefficient using
a transfer function

31

5. Results

5.1.2. Liquid and Ice Water Content

Instead of mapping cloud coverage using a transfer function, we will now derive the
extinction coefficients from LWC and IWC data, coming from the same prediction as
the data used above. The resulting image can be seen in fig. 5.2a with all settings
being the same as in the previous example and using an effective radius of 10 µm for
LWC and 25 µm for IWC in the extinction coefficient calculation. While, because of the
space scale of a value other than 1 as well as the unrealistic vertical scaling, this is
not a physically accurate visualization of clouds as they would be visible when taking
a photograph, the transparency of the clouds is still directly proportional to the real
transparency.

5.1.3. Powder Effect

Figure 5.2 shows the contribution of the powder effect to the overall image. Compared
to fig. 5.2b, where the effect has been completely disabled, the top edges along the
clouds in fig. 5.2a are slightly darkened, serving as a visual cue for the volume’s
structure.

Figure 5.2c shows the effect of the powder depth value. The lower the value, the
deeper the effect reaches into the volume.

5.1.4. Henyey-Greenstein Component

Until now, we have simply used 0.0 as the anisotropy factor for the Henyey-Greenstein
component of the simple lighting method, thus essentially disabling it. Figure 5.3
shows rendered images with a value of 0.7 instead. It can be clearly seen that more
light is simulated to be scattered in directions closer to the original light direction,
which leads to the desired silver-lining phenomenon.

It should be noted, however, that this effect is the same for any point in the volume
since it only accounts for single scattering, i.e. scattered light initially coming directly
from the light source.

5.1.5. Performance and Effects of Resolution

Using the settings from section 5.1.2 while varying the resolution used for the optical
thickness buffer, the following durations for generating the buffer were measured:

32

5. Results

(a) powder strength = 1.0, powder depth = 100.0

(b) powder strength = 0.0, powder depth = 100.0 (c) powder strength = 1.0, powder depth = 10.0

Figure 5.2.: Volume rendered with extinction coefficients derived from LWC and IWC.
Lighting is simulated using our simple method with different settings for
the powder effect.

33

5. Results

(a) top view

(b) side view

(c) bottom view

Figure 5.3.: Demonstration of the effect of the Henyey-Greenstein function in the simple
lighting method.

34

5. Results

map resolution (x, y, z) measured time (ms)
32x16x16 0.20
64x32x32 1.53

128x64x64 9.50
256x128x128 72.86
512x256x256 568.06

1024x512x512 4515.85

All resulting images can be seen in appendix A.1.

5.1.6. Proposal for the Illustration of a Scientific Publication

Our simple method has been used to render the volume in fig. 5.4, which is a proposal
for an illustration to be used as part of the publication of the paper “Flow-dependent
reliability: A path to more skillful ensemble forecasts” by Rodwell et al. [Rod+18]. The
isosurface shows wind speed, while the volume visualizes convective tendency.

For this particular render, the simple method has been slightly modified. The powder
effect at any point is not calculated depending on the optical thickness towards the light
source, but instead on the extinction coefficient at the current position. The isosurface
is also being taken into account when generating the optical thickness buffer in order
to produce the visible shadow cast by the isosurface on the volume. In addition, direct
volume rendering has been combined with the rendering of the isosurface in a single
raycasting pass in order to correctly account for alpha blending where both volumes
visually overlap or intersect.

35

5. Results

Figure 5.4.: Proposal for an illustration to be used as part of the publication of the pa-
per “Flow-dependent reliability: A path to more skillful ensemble forecasts”
by Rodwell et al. [Rod+18], rendered using our simple lighting method

36

5. Results

Figure 5.5.: An image rendered with the photon mapping method and isotropic scatter-
ing

5.2. Photon Mapping

Figure 5.5 shows an image rendered with the photon mapping method and the follow-
ing settings:

account for earth’s curvature Off
use real vertical scale Off

space scale 0.01
intensity 0.0007
ambient 0.0

photon count 1,000,000
max extinction coefficient (for Woodcock tracking) 0.01

Henyey-Greenstein g 0.0
light direction (x, y, z) (0, 0, -1)

photon map resolution (x, y, z) 128x64x64

5.2.1. Effects of Scattering

As opposed to our simple method, the photon mapping method does directly simulate
multiple scattering instead of only trying to imitate some of its visual phenomena.
While the previous example used an anisotropy factor of 0, we will now raise it to 0.85
to cause forward-oriented scattering and analyze the results.

The rendered images, as well as parts of the raw photon map data, which have been

37

5. Results

(a) Side view

(b) Top view
(c) Slice with z=34 from the

photon map

(d) Bottom view
(e) Slice with z=58 from the

photon map

Figure 5.6.: Demonstration of the effects of scattering in the photon mapping method.
All three rendered images have been created with the exact same settings
and are only viewed from different angles. Figure 5.6c and fig. 5.6e show
horizontal slices from the raw data of the photon map of size (128, 64, 64).
The top image in these figures shows flux while the bottom one displays
the anisotropy coefficient.

38

5. Results

extracted from the running application using RenderDoc [RD], can be seen in fig. 5.6. It
can be observed that, from the top view in fig. 5.6b, parts of the volume that are inside
a denser area appear brighter than edges of the volume as well as overall thinner areas.
This is because in denser areas, more scattering appears, thus raising the probability of
a photon changing its direction to fly back towards the light when taking into account
the forward-oriented scattering we use. This is in our case simulated by the anisotropy
coefficient component of the photon map, as shown in the bottom part of fig. 5.6c. Here,
darker pixels mean lower values, thus a more isotropic distribution of scattered light
while in brighter areas, the distribution still approaches the original forward-oriented
characteristic.

Conversely, the inverse phenomenon can be seen in fig. 5.6d. When looking from the
bottom, thinner areas, thus areas that still mostly employ the original forward-oriented
distribution, appear much brighter, which results in the silver-lining effect.

Comparison with Simple

As mentioned before, the simple method applies the Henyey-Greenstein function
with the same asymmetry factor to the whole volume. The photon mapping method,
however, directly accounts for the effects caused by multiple scattering at any point in
the volume, thus producing a result that is much more accurate to real-world scattering
than the simple method.

While the resulting silver lining phenomenon seen in fig. 5.3c may look similar to the
one in fig. 5.6d, the results seen from the top in fig. 5.3a clearly show this weakness
when being compared to fig. 5.6b.

The effect of less light being scattered back towards the light is only modeled using
the powder effect in the simple method, which, as mentioned, is merely an imitation of
the observed visual outcome rather than the result of an actual simulation.

39

5. Results

5.2.2. Real-World Scaling

We will now use the conversion to real length units in order to render an image which
is as physically realistic as it can be with our method. For this example, we will use a
different data set with a higher resolution. Specifically, this is ECMWF analysis data
of Mo. 2016-09-26 12:00 UTC. The following settings were used to produce the results
seen in fig. 5.7:

account for earth’s curvature On
use real vertical scale On

space scale 1.0
force uniform scale for view On

effective radius lwc 10 µm
effective radius iwc 25 µm

intensity 13.0
ambient 0.0

photon count 10,000,000
max extinction coefficient (for Woodcock tracking) 0.01

Henyey-Greenstein g 0.3
light direction (x, y, z) (0, 0, -1)

photon map resolution (x, y, z) 128x64x64

Because of the excessive vertical scale in relation to the horizontal one that is used
when rendering the volume in 3D, it would normally look more opaque than one
would expect when looking at it from any direction other than a perfectly vertical one.
Think of a very big and flat volume being compressed to a cube while still remaining
all of its opaqueness. Because of this, an orthographic projection is used to render
images seen from the top.

In order to still be able to produce images seen from other angles, the option "force
uniform scale for view" is used to apply the scaling used for the vertical axis to all axes.
This only applies when rendering the final volume and does not affect the calculation
of lighting. However, the images seen from side angles do not accurately represent the
actual transparency of the clouds in reality as opposed to the ones rendered from the
top.

5.2.3. Comparison with Images Rendered with MFASIS

In direct comparison of fig. 5.7a with fig. 5.8a, which shows an image rendered from
the same input data, only at a lower resolution, using the implementation of another
simulation of light transfer for clouds, called MFASIS (Method for Fast Satellite Image
Simulation), which has been integrated in Met.3D by Diefenbach [Die17], it is apparent
that the clouds rendered with our method appear overall much more opaque. One

40

5. Results

(a) Top view using orthographic projection

(b) Side view

Figure 5.7.: Images rendered with the photon mapping method using realistic scaling
of length units.

41

5. Results

(a) Image rendered using MFASIS

(b) Image rendered using photon mapping and compensated transparency

(c) Side view rendered using photon mapping

Figure 5.8.: Comparison of lighting from our photon method with MFASIS.

42

5. Results

aspect that MFASIS takes into account, but our method does do not, is light coming
from the ground and being scattered inside the clouds, but almost directly forward and
thus being visible in the form of higher transparency of the cloud volume.

As a compensation, we will set the space scale for only the final volume rendering,
not the lighting calculation, to 0.1, thus lowering all values for optical thickness by a
factor of 10 and making the clouds overall more transparent. While this is only an
arbitrarily selected value to match the transparency, which removes physical accuracy
from our calculations, the result in fig. 5.8b can at least be used to compare the visual
outcome of the lighting method.

One major advantage of our method is, however, that it is possible to take the lighting
data calculated using realistic scaling in all axes and view the volume from arbitrary
directions by enabling "force uniform scale for view", as it has been done for fig. 5.8c,
instead of being limited to the orthographic projection from the top.

5.2.4. Performance and Effects of Resolution and Photon Count

We will now analyze the time it takes to generate the photon map using different
combinations of photon map resolution and the number of photons as well as the
resulting images. All cases use the same high-resolution data set as fig. 5.7a with the
following settings:

account for earth’s curvature On
use real vertical scale On

space scale 1.0
force uniform scale for view On

effective radius lwc 10 µm
effective radius iwc 25 µm

intensity 13.0
ambient 0.0

max extinction coefficient (for Woodcock tracking) 0.01
Henyey-Greenstein g 0.3

light direction (x, y, z) (0, 0, -1)

All resulting images can be seen in appendix A.2. The following durations for
generating the photon map have been measured:

43

5. Results

photon count 16x8x8 32x16x16 64x32x32 128x64x64
100 0.086 s 0.085 s 0.085 s 0.086 s

1000 0.127 s 0.126 s 0.127 s 0.126 s
10000 0.692 s 0.690 s 0.694 s 0.692 s

100000 4.383 s 4.382 s 4.386 s 4.393 s
1000000 42.266 s 42.409 s 42.601 s 42.718 s

10000000 425.378 s 426.363 s 426.839 s 427.696 s

The values above only represent the time for the actual photon tracing step without
the conversion to the floating point buffer. The time for this conversion ranges between
0.1 ms and 2 ms.

The result shows only a neglectable impact of the resolution on performance in the
measured range. Conversely, the resolution has a major impact on the resulting images
in combination with the photon count. Logically, the higher the resolution for a fixed
photon count, the less photons will fall into a single cell and thus noise becomes more
visible.

A problem can be observed in fig. A.10, fig. A.11 as well as fig. A.16. These are all
cases with a low resolution but high photon count. Because an excessive amount of
photons falls into each cell, overflows occur in the integer 3D textures when generating
the photon map, eventually leading to incorrect results. However, because with a
lower photon count, noise is already barely visible, thus invalidating the need for more
photons, we can simply accept the errors for these cases since they are not practically
useful.

44

6. Conclusion and Future Work

We have implemented two different volume lighting methods in Met.3D and compared
the results. The simple method provides an efficient way to render volumes with
lighting composed of simulated single scattering and visual imitations of several
phenomena normally caused by multiple scattering, but sacrificing physical accuracy.
The second method overcomes this limitation by employing photon mapping. Imposing
several restrictions to the photon mapping algorithm enables it to be implemented
using only regular 3D textures as temporary buffers, thus making it suitable to be
integrated in Met.3D’s OpenGL-based environment.

While our performance measurements have shown that the time the simple method
takes to generate its optical thickness buffer usually lies below one second for settings
leading to an acceptable result, which is appropriate for a pre-pass in an interactive
environment, the time for generating a complete photon map can range much higher,
depending on the desired resolution and photon count needed to produce an acceptable
result with this resolution.

Elek et al. [Ele+12] present two aspects in their work which have not been touched in
thesis. First, they initially use a lower-resolution photon map, which would also reduce
the needed photon count, and then use the original cloud data as guidance to upsample
the photon map to a higher resolution. Second, they do not generate the whole photon
map in only a single pass, but split up the photons across several maps in a circular
buffer that, combined, form the complete photon map. In every rendered frame, only
one of these partial buffers is re-generated, leading to the total work being distributed
across multiple frames. This is especially useful in scenarios where the clouds slowly
change over time and the photon map has to be updated accordingly. Because data
visualized in Met.3D is commonly not animated, a similar approach, which would be
suited for our case, is to also distribute the work across several rendered frames, but
using the single, complete photon map as it is implemented currently, leading to a
continuously improving visual outcome that the user can observe.

An additional possible performance optimization would be to employ empty space
skipping when tracing the photon beams in order to avoid calculations and memory
operations that will not contribute to the final result.

45

A. Additional Rendered Images

A.1. Simple

Figure A.1.: Resolution: 32x16x16

Figure A.2.: Resolution: 64x32x32

46

A. Additional Rendered Images

Figure A.3.: Resolution: 128x64x64

Figure A.4.: Resolution: 512x256x256

Figure A.5.: Resolution: 1024x512x512

47

A. Additional Rendered Images

A.2. Photon Mapping

Figure A.6.: Resolution: 16x8x8; Photon Count: 100

Figure A.7.: Resolution: 16x8x8; Photon Count: 1000

Figure A.8.: Resolution: 16x8x8; Photon Count: 10000

48

A. Additional Rendered Images

Figure A.9.: Resolution: 16x8x8; Photon Count: 100000

Figure A.10.: Resolution: 16x8x8; Photon Count: 1000000 (showing an integer overflow
in the photon map)

Figure A.11.: Resolution: 16x8x8; Photon Count: 10000000 (showing an integer overflow
in the photon map)

49

A. Additional Rendered Images

Figure A.12.: Resolution: 32x16x16; Photon Count: 100

Figure A.13.: Resolution: 32x16x16; Photon Count: 1000

Figure A.14.: Resolution: 32x16x16; Photon Count: 10000

50

A. Additional Rendered Images

Figure A.15.: Resolution: 32x16x16; Photon Count: 100000

Figure A.16.: Resolution: 32x16x16; Photon Count: 1000000

Figure A.17.: Resolution: 32x16x16; Photon Count: 10000000 (showing an integer over-
flow in the photon map)

51

A. Additional Rendered Images

Figure A.18.: Resolution: 64x32x32; Photon Count: 100

Figure A.19.: Resolution: 64x32x32; Photon Count: 1000

Figure A.20.: Resolution: 64x32x32; Photon Count: 10000

52

A. Additional Rendered Images

Figure A.21.: Resolution: 64x32x32; Photon Count: 100000

Figure A.22.: Resolution: 64x32x32; Photon Count: 1000000

Figure A.23.: Resolution: 64x32x32; Photon Count: 10000000

53

A. Additional Rendered Images

Figure A.24.: Resolution: 128x64x64; Photon Count: 100

Figure A.25.: Resolution: 128x64x64; Photon Count: 1000

Figure A.26.: Resolution: 128x64x64; Photon Count: 10000

54

A. Additional Rendered Images

Figure A.27.: Resolution: 128x64x64; Photon Count: 100000

Figure A.28.: Resolution: 128x64x64; Photon Count: 1000000

Figure A.29.: Resolution: 128x64x64; Photon Count: 10000000

55

List of Figures

1.1. Screenshots of Met.3D . 2

2.1. The different phenomena modeled by the radiative transfer equation in
participating media . 3

2.2. Henyey-Greenstein phase function for different values of g, ranging from
back scattering (fig. 2.2a) through isotropic (fig. 2.2b) to almost pure
forward scattering (fig. 2.2c). Note the different scaling in fig. 2.2c. . . . 7

2.3. Illustrations of single and multiple scattering 7

3.1. A cloudscape in Horizon Zero Dawn. Screenshot of the final game taken
on a Playstation 4. 8

3.2. Silver lining when looking at clouds in direction of the sun. One of
the phenomena replicated by our simple lighting method. Photo by
User:Brosen (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html),
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC
BY 2.5 (http://creativecommons.org/licenses/by/2.5)], via Wikimedia
Commons . 9

3.3. Dark edges of clouds, here referred to as the powder effect. One of the
phenomena replicated by our simple lighting method. Photo by Staff
Sgt. Stephany Richards U.S. Department of Defense Current Photos
(140807-F-IG195-010) [Public domain], via Wikimedia Commons 10

3.4. Illustration of the powder effect. At positions with denser surrounding
cloud material, a greater amount of in-scattering is observed. 10

3.5. Plot of the Beer and powder functions as well as the combination of
both. Beer calculates the transmittance through optical depth τ, powder
attenuates areas with low optical thickness from the light, resulting in
darkened cloud edges. 11

3.6. Illustration of the difference between querying photon points and photon
beams. 13

56

List of Figures

3.7. Illustration the anisotropy coefficients saved in the regular grid pho-
ton map. In the upper cells, only little incoming light from scattering
events is present. Thus, the saved anisotropy coefficient yields a strong
forward-oriented light distribution with respect to the global light direc-
tion. Further down inside the volume, more light scattered from other
directions is encountered, so the saved values approach a more isotropic
distribution. 15

3.8. Photon Beams combined with Woodcock Tracking. Random step sizes
are used for tracking the beams. At each step, it is determined whether
a scattering event occurs and if that is the case, a new beam is emitted. 17

4.1. Three-dimensional data rendered without any lighting using DVR and a
transfer function in Met.3D. 19

5.1. Fraction of cloud cover directly mapped to the extinction coefficient
using a transfer function . 31

5.2. Volume rendered with extinction coefficients derived from LWC and
IWC. Lighting is simulated using our simple method with different
settings for the powder effect. 33

5.3. Demonstration of the effect of the Henyey-Greenstein function in the
simple lighting method. 34

5.4. Proposal for an illustration to be used as part of the publication of the
paper “Flow-dependent reliability: A path to more skillful ensemble
forecasts” by Rodwell et al. [Rod+18], rendered using our simple lighting
method . 36

5.5. An image rendered with the photon mapping method and isotropic
scattering . 37

5.6. Demonstration of the effects of scattering in the photon mapping method.
All three rendered images have been created with the exact same settings
and are only viewed from different angles. Figure 5.6c and fig. 5.6e show
horizontal slices from the raw data of the photon map of size (128, 64,
64). The top image in these figures shows flux while the bottom one
displays the anisotropy coefficient. 38

5.7. Images rendered with the photon mapping method using realistic scaling
of length units. 41

5.8. Comparison of lighting from our photon method with MFASIS. 42

57

Bibliography

[Die17] T. A. Diefenbach. “GPU-based Visualization of Simulated Clouds in an In-
teractive Three Dimensional Framework.” MA thesis. Ludwig-Maximilians-
Universität München, Aug. 2017.

[Ele+12] O. Elek, T. Ritschel, A. Wilkie, and H.-P. Seidel. “Interactive cloud rendering
using temporally coherent photon mapping.” In: Computers & Graphics 36.8
(2012), pp. 1109–1118.

[Fu96] Q. Fu. “An accurate parameterization of the solar radiative properties of
cirrus clouds for climate models.” In: Journal of Climate 9.9 (1996), pp. 2058–
2082.

[Har] J. P. Harrington. The Henyey-Greenstein phase function. url: https://www.
astro.umd.edu/~jph/HG_note.pdf.

[HS93] Y. Hu and K. Stamnes. “An accurate parameterization of the radiative
properties of water clouds suitable for use in climate models.” In: Journal of
climate 6.4 (1993), pp. 728–742.

[HT07] L. Howes and D. Thomas. “Efficient random number generation and ap-
plication using CUDA.” In: GPU gems 3 (2007), pp. 805–830. url: https:
//developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch37.html.

[Jar+11] W. Jarosz, D. Nowrouzezahrai, I. Sadeghi, and H. W. Jensen. “A compre-
hensive theory of volumetric radiance estimation using photon points and
beams.” In: ACM Transactions on Graphics (TOG) 30.1 (2011), p. 5.

[JC98] H. W. Jensen and P. H. Christensen. “Efficient simulation of light transport
in scenes with participating media using photon maps.” In: Proceedings
of the 25th annual conference on Computer graphics and interactive techniques.
ACM. 1998, pp. 311–320.

[M] Met.3D - Interactive 3D visualization of meteorological (ensemble) simulations.
url: https://met3d.wavestoweather.de.

[MMC12] S. Mohanty, A. K. Mohanty, and F. Carminati. “Efficient pseudo-random
number generation for monte-carlo simulations using graphic processors.”
In: Journal of Physics: Conference Series 368.1 (2012), p. 012024.

58

https://www.astro.umd.edu/~jph/HG_note.pdf
https://www.astro.umd.edu/~jph/HG_note.pdf
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch37.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch37.html
https://met3d.wavestoweather.de

Bibliography

[Rau+15] M. Rautenhaus, M. Kern, A. Schäfler, and R. Westermann. “Three-dimensional
visualization of ensemble weather forecasts – Part 1: The visualization tool
Met.3D (version 1.0).” In: Geoscientific Model Development 8.7 (2015), pp. 2329–
2353. doi: 10.5194/gmd-8-2329-2015. url: https://www.geosci-model-
dev.net/8/2329/2015/.

[RD] RenderDoc. url: https://renderdoc.org.

[Rod+18] M. J. Rodwell, D. S. Richardson, D. B. Parsons, and H. Wernli. “Flow-
dependent reliability: A path to more skillful ensemble forecasts.” In: Bul-
letin of the American Meteorological Society (2018). doi: 10.1175/BAMS-D-17-
0027.1.

[SV15] A. Schneider and N. Vos. “The Real-Time Volumetric Cloudscapes of Hori-
zon Zero Dawn.” In: SIGGRAPH ’15. Aug. 2015.

[Woo+65] E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth. “Techniques
used in the GEM code for Monte Carlo neutronics calculations in reactors
and other systems of complex geometry.” In: Proc. Conf. Applications of
Computing Methods to Reactor Problems. Vol. 557. 2. 1965.

59

https://doi.org/10.5194/gmd-8-2329-2015
https://www.geosci-model-dev.net/8/2329/2015/
https://www.geosci-model-dev.net/8/2329/2015/
https://renderdoc.org
https://doi.org/10.1175/BAMS-D-17-0027.1
https://doi.org/10.1175/BAMS-D-17-0027.1

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Used Symbols
	Participating Media
	Radiative Transfer Equation
	Volume Rendering Equation

	Phase Functions
	Isotropic Phase Function
	Henyey-Greenstein Function

	Single and Multiple Scattering

	Method
	Simple
	Single Scattering
	Powder Effect
	Silver Lining
	Full Lighting

	Photon Mapping
	Photon Points
	Photon Beams
	Regular Photon Grid
	Woodcock Tracking

	Implementation
	Direct Volume Rendering
	Coordinate System Scaling
	Determining Extinction Coefficients for Liquid and Ice Water Content
	Simple Lighting
	Optical Thickness Buffer
	Rendering

	Photon Mapping
	Pseudo Random Number Generation in GLSL
	Photon Pass
	Rendering

	Results
	Simple
	Transfer Function
	Liquid and Ice Water Content
	Powder Effect
	Henyey-Greenstein Component
	Performance and Effects of Resolution
	Proposal for the Illustration of a Scientific Publication

	Photon Mapping
	Effects of Scattering
	Real-World Scaling
	Comparison with Images Rendered with MFASIS
	Performance and Effects of Resolution and Photon Count

	Conclusion and Future Work
	Additional Rendered Images
	Simple
	Photon Mapping

	List of Figures
	Bibliography

