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Abstract

Many binary analysis tools and compilers, instead
of directly working on code, use an intermediate
representation of it. The idea of this thesis is to use
the well-tested intermediate representation from
LLVM for binary analysis tasks. We take a look
at McSema, a tool to translate x86 and x86_64 bi-
naries to LLVM, describe its translation process in
detail and additionally implement Python bindings
for it. To practically test McSema, we present five
examples of code we translate to LLVM and then
recompile again. The last of these demos is an exam-
ple on using KLEE, a symbolic execution engine for
LLVM, on the code produced by McSema in order
to successfully solve a CrackMe. We conclude that
McSema’s translation approach provides a suitable
way to extract functions from binaries to integrate
them in other code or to analyse them using sym-
bolic execution, as well as serving as a potential
basis to implement an LLVM-based decompiler. We
also compare it to Remill, another tool similar to
McSema, which generates code that represents the
assembly code more explicitly and VEX, the inter-
mediate representation used in Valgind and Angr,
which is also more close to the machine code.

1 Motivation

Many tools and frameworks exist to analyze bina-
ries in a lot of ways. Especially when perform-

ing some sort of automatic analysis, most of these
tools do not directly work on the raw machine code.
Instead, one common approach is to first gener-
ate some sort of intermediate representation of the
code, so the analysis algorithms do not have to care
about aspects such as the original CPU architecture.

Similar techniques can be observed when look-
ing at the architecture of common compilers. For
instance, LLVM, which has a very modular archi-
tecture, contains a whole programming language
called LLVM IR, which we will describe in detail
in 2.3.1. Because many projects need to be able to
rely on their compiler to always generate the right
output for their input, compiler developers attach
great importance to stability and correctness.

This thesis is based on the idea to use a robust
and well tested intermediate language from a com-
piler in order to produce an intermediate represen-
tation for machine code instead of generating it
from a high level language as usual.

2 Background

2.1 Intermediate Representations (IR)

An intermediate representation, henceforth referred
to as IR, is a language or another form of data that
is used to represent source code. IRs are commonly
used internally in compilers and virtual machines
and often have specific characteristics to suit the
intended purpose.
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2.2 Static Single Assignment (SSA)

Static Single Assignment (SSA) is a property of a
language which adds the rule that every variable is
assigned in exactly one location of the program. If
a variable has to be written to multiple times, new
versions of this variable are created.

2.3 LLVM

LLVM is a "collection of modular and reusable com-
piler and toolchain technologies", which roughly
means, it is an architechture that allows building
compilers to translate from an arbitary language
to a variety of target architechtures. It has gained
popularity over the last years and is, for example,
used as the default compiler on macOS and as part
of the compilation process for the relatively young
language Swift.

The normal compilation process in LLVM can be
coarsely divided into three different stages. The
frontend takes the original code and translates it
into LLVM’s custom IR, called LLVM IR. When this
representation has been obtained, several optimiza-
tions can be performed on the code. LLVM already
provides powerful features for this purpose. The
last stage, called the backend, is then responsible
for translating the IR into native machine code.

Because of this modular architechture, compilers
for new programming languages can be developed
quite easily. Essentially, it is sufficient to create
a frontend that translates the language to LLVM
IR. This frontend does not necessarily need to do
any optimization and can perform a very naive
translation. This is why, nowadays, a huge variety
of frontends for different programming languages
exist, including C, C++, C#, Delphi, GLSL, Java, Lua
and Python.

2.3.1 LLVM Intermediate Representation

LLVM IR is a language that is quite close to as-
sembly language, but still independent of both the
original language and the target architecture in a
compilation process. Although in practice, LLVM
IR is mostly used as an internal representation that
the user of a compiler does not even need to know
about, in theory, it can also be used to write com-
plete programs in. Here is an example of a "Hello
World" program, taken from the official language
reference: [1]

1 ; D e c l a r e t h e s t r i n g c o n s t a n t as a g l o b a l
c o n s t a n t .

2 @. s t r = p r i v a t e unnamed_addr constant [13 x i8 ] c
" h e l l o world\0A\00 "

3

4 ; E x t e r n a l d e c l a r a t i o n o f t h e put s f u n c t i o n
5 dec la re i32 @puts ( i8∗ nocapture ) nounwind
6

7 ; D e f i n i t i o n o f main f u n c t i o n
8 def ine i32 @main ( ) { ; i 3 2 ( ) ∗
9 ; Conver t [13 x i 8 ]∗ t o i 8 ∗ . . .

10 %cast210 = getelementptr [13 x i8 ] , [13 x i8 ]∗
@. s t r , i64 0 , i64 0

11

12 ; C a l l pu t s f u n c t i o n t o w r i t e out t h e s t r i n g t o
s t d o u t .

13 c a l l i32 @puts ( i8∗ %cast210 )
14 r e t i32 0

15 }
16

17 ; Named m e t a d a t a
18 ! 0 = ! { i32 42 , nul l , ! " s t r i n g " }
19 ! foo = ! { ! 0 }

LLVM IR is type safe and conforms to the Single
Static Assignment form explained in 2.2. Code
is organized in modules, which can be coursely
described as the term for one file of LLVM code
and roughly corresponds to one source file in C.
LLVM code can be represented either in human-
readable text form like the example above (.ll files)
or encoded as bitcode (.bc files).

A module can contain functions, global variables,
symbol table entries and metadata. The example
consists of the global variable .str, a declaration of
the external function puts, the function main and
some metadata.

Functions in LLVM are very similar to functions
in C. They can have any number of arguments and
optionally a single return value.

Identifiers that start with a @ sign describe a
global symbol, while the ones starting with % are
only local. Metadata definitions begin with a ! sign.

LLVM provides, among others, basic integer
types, such as i32, pointer types like i32 *, arrays
and struct types which can be defined like this:

1 %somestructtype = type { i32 , f l o a t , i32 ∗ }

Code in functions consists of a series of instruc-
tions and labels which can be jumped to. Common
control flow statements such as if/else or loops do
not exist in LLVM and are instead modeled using
branch instructions:

1 @str = p r i v a t e unnamed_addr constant [52 x i8 ] c "
Second parameter i s higher or parameters are

equal .\00 "
2 @str2 = p r i v a t e unnamed_addr constant [27 x i8 ] c

" F i r s t parameter i s higher .\00 "
3

4 def ine void @ni l_recurr ing ( i32 %a, i32 %b) #0

5 {
6 entry :
7 %cmp = icmp sg t i32 %a, %b
8 br i1 %cmp, label %if . then , label %if . e l s e
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9

10 i f . then :
11 %puts2 = t a i l c a l l i32 @puts ( i8∗ getelementptr

inbounds ( [ 2 7 x i8 ]∗ @str2 , i64 0 , i64 0 ) )
12 br label %if . end
13

14 i f . e l s e :
15 %puts = t a i l c a l l i32 @puts ( i8∗ getelementptr

inbounds ( [ 5 2 x i8 ]∗ @str , i64 0 , i64 0 ) )
16 br label %if . end
17

18 i f . end :
19 r e t void
20 }
21

22 dec l are i32 @puts ( i8∗ nocapture readonly ) #1

2.3.2 Passes

LLVM includes strong features for optimizing its
IR code. These are implemented in the form of
so-called passes which analyse or transform the
code in some way. Examples for these passes are
-memdep, which determines what operations a given
memory operation depends on, or -dce, which per-
forms dead code elimination.

Usually, these passes are executed by the user
indirectly through either the compiler frontend, for
example by specifying the -O3 argument to clang,
or the tool opt which optimizes given LLVM code.

2.4 McSema

McSema is a framework, developed by the security
company Trail of Bits and available under a BSD
license, which allows to translate native x86 and
x86_64 code to LLVM IR. It takes a modular ap-
proach on the translation task by splitting it into
two seperate parts: Control Flow Graph (CFG) re-
covery and the actual translation to LLVM IR. The
translation approach is explained in detail in 4.1.

2.5 KLEE

KLEE is a symbolic execution engine built upon
LLVM. Its primary purpose is to automatically gen-
erate test cases with a high code coverage for soft-
ware projects. It operates directly on LLVM IR code,
which would normally be compiled directly from
the original source code in a high level language.
[6]

3 Related Work

3.1 Valgrind and VEX

Valgrind is a framework for debugging and profil-
ing programs on Linux. It is divided into a single
core part and multiple tools for different purposes.
As an example, Memcheck supervises all alloca-
tions, reads and writes of memory while running
the program and detects, among other things, if
any memory is accessed in a wrong way or the
program has any memory leaks. Overall, Valgrind
is a very mature project that contains production-
quality tools and has been extensively tested.

Under the hood, Valgrind uses a custom IR called
VEX. A program in VEX consists of multiple code
blocks. These blocks have exactly one entry and
can have multiple exits and consist of a list of state-
ments, one or more jump and information about
the types of temporary values used in the block [5].

Statements in VEX can be seen similar to instruc-
tions in machine code. They are executed and can
alter the current state of the program. This state,
called the guest state, is saved in a block of mem-
ory that contains the contents of registers and is
accessed using Get and Put statements.

This is a short example of how x86 code can get
translated to VEX, taken from the libvex source
code:

1 addl %eax , %ebx

1 −−−−−− IMark (0 x24F275 , 7 , 0 ) −−−−−−
2 t3 = GET : I32 ( 0 ) # get %eax , a 32−b i t i n t e g e r
3 t2 = GET : I32 ( 1 2 ) # get %ebx , a 32−b i t i n t e g e r
4 t1 = Add32 ( t3 , t2 ) # addl
5 PUT( 0 ) = t1 # put %eax

The IMark contains information about the posi-
tion and length of the original instruction, while t1,
t2 and t3 are temporary variables.

3.2 Angr

Angr is a toolkit for binary analysis, available as a
Python framework that provides a variety of func-
tionality to load and analyze binaries instead of
being a single program. This makes Angr relatively
flexible to use, because the user can either access it
using an interactive Python shell or write a small
script. [9]

This is an example of a simple script that finds
out the password a program is asking for by per-
forming symbolic execution:

1 import angr
2 import base64
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3

4 pro j = angr . P r o j e c t ( ’ ./ password ’ )
5

6 argv1 = angr . c l a r i p y . BVS( " argv1 " , 16 ∗ 8 )
7 i n i t i a l _ s t a t e = pro j . f a c t o r y . e n t r y _ s t a t e (
8 args =[ " ./ password " , argv1 ] )
9

10 i n i t i a l _ p a t h = pro j . f a c t o r y . path ( i n i t i a l _ s t a t e )
11 path_group =
12 pro j . f a c t o r y . path_group ( i n i t i a l _ s t a t e )
13 path_group . explore ( f ind =0x4005ce , avoid=0x4005df )
14 found = path_group . found [ 0 ]
15

16 pw = found . s t a t e . se . any_str ( argv1 )
17

18 print base64 . b64encode (pw)

Internally, Angr uses VEX as its intermediate
representation, which has been chosen, because re-
liable translation methods from many architectures
already existed in Valgrind.

3.3 Remill

Remill is another framework to translate binaries to
LLVM developed by the same company that devel-
oped McSema, Trail of Bits. It is similar to McSema
in a lot of ways, for example it also seperates CFG
recovery from translation, but it also takes differ-
ent approaches in some ways. One big difference
is that, while McSema translates whole functions
from the binary as LLVM functions, Remill creates
a single function for each basic block in the CFG. Its
goal is primarily to generate an LLVM equivalent
of the assembly code that explicitly represents the
original control flow and memory usage. [3] [4]

4 Approach

This thesis focuses on the lifter McSema. We will
describe in detail how it translates machine code to
LLVM and then use it in a number of demos. All
code mentioned here is available on the accompa-
nying git repository [2].

4.1 McSema in-depth

In order to translate x86 or x86_64 to LLVM IR,
McSema takes a modular approach by splitting the
process into two seperate parts. First, a Control
Flow Graph (CFG) has to be generated on the orig-
inal file, which can be done in multiple ways as
described in the following. To store the CFG, a
custom file format based on Google Protobuf is
provided by McSema. Taking this CFG, the pro-
gram mcsema-lift can then generate the equiva-
lent LLVM IR code. We will describe the translation
process in detail later.

4.1.1 CFG recovery using bin descend

One way to recover control flow used to be pro-
vided by McSema directly through the program
bin_descend which takes a binary and generates a
CFG through recursive descend.

Unfortunately, development of bin_descend has
eventually fallen behind and it has been removed
completely from McSema’s official git repository
during the time of writing.

4.1.2 CFG recovery using IDA Pro

Another way for CFG generation is using the pro-
prietary program IDA Pro by Hex Rays. McSema
provides an IDAPython script for this purpose that
lets IDA Pro recover the control flow and then ex-
ports exactly what IDA Pro finds out to McSema’s
CFG file format. To conveniently use it, mcsema
provides a tool called mcsema-disass that automat-
ically starts IDA Pro and runs the script inside it.

Since IDA Pro’s control flow recovery is fairly
reliable, this approach is currently the most robust
one and thus also the recommended way for CFG
generation.

4.1.3 Translation to LLVM IR

After control flow has been recovered, mcsema-lift
can translate it into LLVM IR. McSema’s way of
translating to LLVM is a very naive one. It does
not attempt any optimization of the code during
the translation step and thus produces a certain
amount of unnecessary code in most cases. In-
stead, this resulting code is supposed to be passed
through LLVM’s optimizer, which can remove un-
needed computations. This approach makes the
implementation of the translation fairly easy since
instructions can simply be translated one after an-
other by emitting the equivalent LLVM code.

Register Structure In order to be able to repro-
duce the effects the instructions have on registers, a
special struct is defined which contains a complete
state of all registers supported by McSema on the re-
spective architecture, each in its own variable. The
struct is called %RegState in LLVM and RegState
in C or C++ code. This is how the struct for x86 is
defined in LLVM:

1 %RegState = type { i32 , i32 , i32 , i32 , i32 , i32 ,
i32 , i32 , i32 , i32 , i32 , i32 , i32 , i32 , i32 ,

i32 , i32 , i8 , i8 , i8 , i8 , i8 , i8 , i8 ,
x86_fp80 , x86_fp80 , x86_fp80 , x86_fp80 ,
x86_fp80 , x86_fp80 , x86_fp80 , x86_fp80 , i8 ,
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i8 , i8 , i8 , i8 , i8 , i8 , i8 , i8 , i8 , i8 , i8 ,
i8 , i8 , i8 , i8 , i8 , i8 , i8 , i8 , i8 , i8 , [10

x i8 ] , i128 , i128 , i128 , i128 , i128 , i128 ,
i128 , i128 , i128 , i128 , i128 , i128 , i128 ,
i128 , i128 , i128 }

In C/C++, it looks as shown in the code below.
This snippet has been simplified to make it more
readable.
1 typedef u i n t 3 2 _ t reg_ t ;
2

3 s t r u c t a l i g n a s ( 1 6 ) RegState
4 {
5 reg_ t RIP ;
6 reg_ t RAX;
7 reg_ t RBX ;
8 reg_ t RCX;
9 reg_ t RDX;

10 reg_ t RSI ;
11 reg_ t RDI ;
12 reg_ t RSP ;
13 reg_ t RBP ;
14

15 / / . . . more r e g i s t e r s f o l l o w i n g . . .
16

17 } ;

Both definitions have the exact same data layout,
so the memory for a single struct can be directly
accessed in both languages.

Data Sections McSema simply translates data
sections as global instances of packed LLVM structs.
They can then be referenced from code.

Internal Functions Functions from the binary
are represented as normal LLVM functions. Since
functions essentially consist of a series of instruc-
tions altering registers and memory, that is exactly
how McSema models them in LLVM. Each internal
function has no return value, but takes a pointer
to a register struct as its only argument in order
to modify its contents the same way the original
assembly would:
1 def ine i n t e r n a l void @example ( %RegState ∗ ) #1

Due to this approach, the original parameters
and the return value are not directly recreated in
LLVM, but at the same time, the translation does
not need to care for calling conventions at all in this
case and can thus guarantee parameters and return
values still work the same way as in the original
code.

This is an example of a short function in assem-
bly with the corresponding lifted function from
which a lot of code has been omitted that would be
irrellevant here:
1 s t a r t :
2 add eax , 1

3 r e t

1 def ine void @example ( %RegState∗ nocapture ) #0 {
2 {
3 %RAX_write = getelementptr inbounds %RegState ,

%RegState∗ %0 , i32 0 , i32 1 , !
mcsema_real_eip ! 0

4

5 %1 = load i32 , i32∗ %RAX_write , a l i g n 4 , !
mcsema_real_eip ! 0

6

7 %2 = add i32 %1 , 1 , ! mcsema_real_eip ! 0

8

9 s t o r e v o l a t i l e i32 %2 , i32∗ %RAX_write , a l i g n
4 , ! mcsema_real_eip ! 0

10

11 r e t void , ! mcsema_real_eip ! 1

12 }

At the beginning of the function, pointers to all
registers are extracted from the struct to local vari-
ables, for example %RAX_write. To work on the
value of the register, its value gets loaded into a
variable called %1. In this example, the function
adds 1 to eax. This calculation is performed in line
7. Finally, the calculated value is written back to
the pointer in %RAX_write and the function returns.

In addition, McSema attaches a metadata value
called mcsema_real_eip to most LLVM instructions
which contains an address of the original assembly
instruction.

Transitioning between Native and Lifted Code
In order to be able to call lifted functions from
other code, McSema inserts small inline assembly
snippets at the beginning of the LLVM code con-
taining a label with the name of the function to
be exposed, so when the function is called from
outside, this assembly code gets executed. From
there, a function called __mcsema_attach_call (or
similar, depending on the architecture) is called,
which copies all needed native registers’ contents
to the register struct:

1 module asm " . g l o b l sub_8000001 ; "
2 module asm " . g l o b l s t a r t ; "
3 module asm " . type s t a r t , @function "
4 module asm " s t a r t : "
5 module asm " . c f i _ s t a r t p r o c ; "
6 module asm " pushl $sub_8000001 ; "
7 module asm " jmp __mcsema_attach_cal l_cdecl ; "
8 module asm " 0 : "
9 module asm " . s i z e s t a r t , 0 b−s t a r t ; "

10 module asm " . c f i_endproc ; "

In the same way, __mcsema_dettach_ret exists
in order to transition back into native code.

Similarly, external calls from LLVM are han-
dled using __mcsema_detach_call_cdecl and
__mcsema_detach_call_cdecl when calling a func-
tion using the cdecl calling convenction, for exam-
ple. Corresponding to the definitions of the external
functions in the CFG file, declarations for these are
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created within the LLVM code, prefixed with an
underscore:

1 dec l are x86_64_sysvcc i64 @_puts ( i64 ) #2

These functions are implemented in inline assem-
bly as well to perform the transition:

1 module asm " . g l o b l p r i n t f ; "
2 module asm " . g l o b l _ p r i n t f ; "
3 module asm " . type _ p r i n t f , @function "
4 module asm " _ p r i n t f : "
5 module asm " . c f i _ s t a r t p r o c ; "
6 module asm " pushl $ p r i n t f ; "
7 module asm " jmp __mcsema_detach_call_cdecl ; "
8 module asm " 0 : "
9 module asm " . s i z e _ p r i n t f , 0 b−_ p r i n t f ; "

10 module asm " . c f i_endproc ; "

4.2 Exposing McSema to Python

Since McSema, which is written mostly in C++, is
normally used through its command line tools, we
decided to create Python bindings for it in order to
be able to create Python scripts using it that are eas-
ier to understand and write than just shell scripts.
In addition, this can be seen as a first step towards a
complete binary analysis framework using Python,
similar to Angr, but using LLVM instead of VEX.

Many different possibilities exist to expose C++
code to Python. In this case, we decided to use
Boost.Python which is relatively easy to use and
since McSema already uses Boost, no additional
dependencies have to be added.

In our wrapper, everything exposed from C++
can be accessed through the Python module mcsema.
It contains the class Lifter for translation to
LLVM. In addition, IDACFGGenerator from cfg_ida
can be used to recover the CFG similarly to
mcsema-disass.

4.3 Using McSema

This is a small example which uses our Python
bindings to translate an object file to LLVM:

1 from mcsema import mcsema , c fg_ ida
2

3 i n p u t _ f i l e = " demo_test . o "
4 ida_exec = " idaq "
5

6 # R e c o v e r CFG
7

8 cfg_gen = cfg_ ida . IDACFGGenerator ( ida_exec , "
g e t_ c f g . py " , i n p u t _ f i l e , " x86 " , " l inux " )

9 cfg_gen . entry_symbols = [ " s t a r t " ]
10 cfg_gen . func_maps = [ ]
11 cfg_gen . execute ( " demo_test . c fg " )
12

13

14 # T r a n s l a t e t o LLVM
15

16 cfg_to_l lvm = mcsema . L i f t e r ( " l inux " , " x86 " , "
demo_test . c fg " )

17 cfg_to_l lvm . entry_points = [ " s t a r t " ]
18 cfg_to_l lvm . execute ( " demo_test . bc " )

After initializing McSema, conforming to its two
step approach, we first recover the CFG using
IDACFGGenerator. We specify which symbols to use
as an entry point and then execute it. Optionally,
if the binary contains any external calls, text files
containing information specifying the arguments
and calling conventions of the external functions
have to be passed to func_maps. In the second step,
an instance of Lifter is created and then executed
after specifying the entry points to expose to native
code.

5 Evaluation

Now it is time to use McSema on some actual code.
All demos covered here are available on the accom-
panying git repository under python/test.

5.1 Demo 1 - Assembly

The first demo translates the very simple function
written in assembly that has already been used as
an example in 4.1.3. It simply adds 1 to a number
given in eax:

1 add_one :
2 add eax , 1

3 r e t

This code is assembled into an object file and
lifted into LLVM. The lifted function, which Mc-
Sema calls sub_8000001 in LLVM, should then be
called from C code. Here, we can not call it directly
through the generated inline assembly, because it
does not conform to the cdecl calling convention
that would be used on x86. Instead, we write a
custom driver in C, along with a main function to
test it:

1 # define add_one_raw sub_8000001

2 extern void add_one_raw ( RegState ∗ ) ;
3

4 i n t add_one_driver ( i n t v )
5 {
6 RegState r e g _ s t a t e ;
7 unsigned long s tack [ 4 0 9 6∗1 0 ] ;
8

9 memset(& r e g _ s t a t e , 0 , s i ze of ( r e g _ s t a t e ) ) ;
10

11 r e g _ s t a t e . ESP =
12 ( unsigned long )&s tack [ 4 0 9 6∗9 ] ;
13 r e g _ s t a t e .EAX = v ;
14

15 add_one_raw(& r e g _ s t a t e ) ;
16

17 return r e g _ s t a t e .EAX;
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18 }
19

20 i n t main ( i n t argc , char ∗argv [ ] )
21 {
22 i n t a = add_one_driver ( 1 2 ) ;
23 p r i n t f ( "%d −> %d\n" , 12 , a ) ;
24 return 0 ;
25 }

The driver function add_one_driver creates an
instance of RegState and allocates some memory
for the stack. It assigns the input value to EAX and
eventually calls the raw function. In the end, it
returns the calculated value from EAX.

This C code, in addition with a main function
to test it, is being compiled with the lifted LLVM
bitcode to an executable as follows:

1 clang −m32 . . / . . / . . / generated/ELF_32_linux . S
demo_test_opt . bc demo_driver . c −o
demo_driver

The file ELF_32_linux.S contains the functions
such as __mcsema_attach_call_cdecl. Although
we do not actually use them in this demo, they
are still necessary since the compilation would fail
otherwise.

Running the program gives us the following out-
put:

1 12 −> 13

5.2 Demo 2 - C Function

Next, we want to lift a function implemented in C:

1 i n t deadwing ( i n t a )
2 {
3 return a + 5 ;
4 }

This code is compiled into an object file and then
lifted from that. In order to call it, it is not necessary
to write any driver. Instead, the function can just
be called directly. Passing the parameter into the
lifted code and the return value back is all handled
by McSema’s functions:

1 extern i n t deadwing ( i n t a ) ;
2

3 i n t main ( i n t argc , char ∗argv [ ] )
4 {
5 p r i n t f ( " Resul t : %d\n" , deadwing ( 3 7 ) ) ;
6 return 0 ;
7 }

Compiling and running this code results in the
following output:

1 Resul t : 42

5.3 Demo 3 - Multiple Functions and
External Calls

In this demo, a complete executable is being lifted
and recompiled. This is the original code:

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3

4 i n t b l a c k e s t _ e y e s ( i n t a )
5 {
6 return a ∗ 7 ;
7 }
8

9 i n t main ( i n t argc , char ∗argv [ ] )
10 {
11 i f ( argc != 2 )
12 {
13 p r i n t f ( " Usage : %s [ number]\n" , argv [ 0 ] ) ;
14 return 1 ;
15 }
16

17 i n t a = a t o i ( argv [ 1 ] ) ;
18 a = b l a c k e s t _ e y e s ( a ) ;
19

20 p r i n t f ( " The r e s u l t i s %d.\n" , a ) ;
21 return 0 ;
22 }

In this case, the CFG Generator needs additional
knowledge about printf and atoi. McSema al-
ready provides a file containing information about
the most common functions on Linux, located at
tools/mcsema_disass/defs/linux.txt along with
a similar file for Windows. This has to be passed to
the CFG Generator class in the Python script:

1 # . . .
2

3 cfg_gen = common . c fg_genera tor ( " demo_test " , " x86 "
, " l inux " )

4 cfg_gen . func_maps = [ " . . / . . / . . / t o o l s /
mcsema_disass/defs/l inux . t x t " ]

5 cfg_gen . entry_symbols = [ " main " ]
6 cfg_gen . execute ( " demo_test . c fg " )
7

8 # . . .

After lifting the executable using main as the
entry point, the bitcode can be directly compiled
again:

1 clang −m32 . . / . . / . . / generated/ELF_32_linux . S
demo_test_opt . bc −o demo_recompiled

Running this recompiled program shows the
same behaviour as the original one:

1 $ ./ demo_recompiled 191

2 The r e s u l t i s 1337 .

5.4 Demo 4 - Jump Table

This example demonstrates how McSema handles
jump tables. As a basis serves a function containing
a switch statement with evenly distributed cases:
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1 i n t switch_func ( i n t a )
2 {
3 switch ( a )
4 {
5 case 0 :
6 p r i n t f ( " 42\n" ) ;
7 break ;
8 case 1 :
9 p r i n t f ( " 1337\n" ) ;

10 break ;
11

12 / / . . . c a s e s 2 t o 6 . . .
13

14 case 7 :
15 p r i n t f ( " 4563 " ) ;
16 break ;
17 default :
18 break ;
19 }
20

21 p r i n t f ( " end of switch_func\n" ) ;
22 return 12345 ;
23 }

Compiling this function using a common com-
piler will most likely result in a jump table being
created. This is an excerpt of the assembly code
clang would generate:

1 mov ecx , dword [ eax ∗4 ]
2 jmp ecx
3

4 ; e c x == 0 => jmp a b o v e would end up jumping h e r e
5 lea eax , [ 0 ] ; RELOC 32 . L . s t r
6 mov dword [ esp ] , eax
7 c a l l r e l o c . p r i n t f _ 1 1 5

8 mov dword [ ebp − 0x10 ] , eax
9 jmp l o c . 0 8 0 0 0 1 1 e

10

11 ; o t h e r c a s e s f o l l o w i n g h e r e . . .

Given the value of a in ecx, instead of performing
a number of comparisons, the raw value is multi-
plied by 4 and directly used as a jump offset. Given
that it is correctly represented in the CFG file, Mc-
Sema can handle this type of code. After lifing the
function, it can be observed that a number of call-
back functions are created, each calling an internal
function containing the code for one case. In addi-
tion, a global struct is created containing pointers
to these functions:

1 %0 = type <{ void ( ) ∗ , void ( ) ∗ , void ( ) ∗ , void
( ) ∗ , void ( ) ∗ , void ( ) ∗ , void ( ) ∗ , void ( ) ∗
} >

2

3 @data_0x80000fc = i n t e r n a l constant %0 <{
4 void ( ) ∗ @callback_sub_8000029 ,
5 void ( ) ∗ @callback_sub_800003 f ,
6 void ( ) ∗ @callback_sub_8000055 ,
7 void ( ) ∗ @callback_sub_800006b ,
8 void ( ) ∗ @callback_sub_8000081 ,
9 void ( ) ∗ @callback_sub_8000097 ,

10 void ( ) ∗ @callback_sub_80000ad ,
11 void ( ) ∗ @callback_sub_80000c3 } > , a l i g n 32

Calling the correct function for the input value is
implemented in the following snippet:

1 %43 = shl i32 %42 , 2

2

3 %44 = add i32 %43 , p t r t o i n t (%0∗ @data_0x80000fc
to i32 ) , ! mcsema_real_eip ! 1 1

4

5 %45 = i n t t o p t r i32 %44 to i32 ∗ , ! mcsema_real_eip
! 1 1

6

7 %46 = load i32∗ %45 , a l i g n 4 , ! mcsema_real_eip
! 1 1

8

9 s t o r e i32 %46 , i32∗ %XIP , a l i g n 4 , !
mcsema_real_eip ! 1 2

10

11 t a i l c a l l void @__mcsema_detach_call_value ( ) , !
mcsema_real_eip ! 1 2

Given the value in %42, it is first multipled by
4 using a shift operation to get the right offset
in the 32-bit aligned struct. Then, the base ad-
dress of @data_0x80000fc is converted to an int,
added to the offset and converted back to a pointer.
The pointer to the callback function is loaded
from this address and stored into the instruction
pointer inside the register struct. The function
__mcsema_detach_call_value() will then take this
address from the struct and eventually call the func-
tion.

Unfortunately, at the current state, recompiling
the code and calling the function results in a seg-
mentation fault after the code from the case has
been executed. This appears to be due to a bug in
McSema as demo13 from the official McSema demos
shows the same problem.

5.5 Demo 5 - Solving a CrackMe with KLEE

The last demo is a very interesting one. We have
a small program in the form of ab 64-bit ELF exe-
cutable that asks for a password encoded in base64:
1 $ ./ qual
2 Welcome . Please enter your base64 encoded input :
3 pleasechangeme
4 Nope .

Our goal now is to lift the whole program to
LLVM and then use KLEE on it to find out the
password. As a first step, we take a look inside the
assembly code to get an overview of the program’s
structure, which can be done using radare2, for
example. [7]

There are only two functions inside the binary
that are interesting in our case: main and b64d
which decodes a base64 encoded string and would
originally have a signature like this:
1 i n t b64d ( char ∗b64_str ing , void ∗∗out_data ) ;

It takes the string in b64_string, allocates the
memory for the decoded data on the heap and
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writes the pointer to it into *out_data. The return
value is the number of bytes decoded.

The main function first reads a string through
fgets and then calls b64d to decode it. It checks
if the length is exactly 16 and otherwise fails im-
mediately. After that, it performs a number of xor
and circular bit shift operations on the data inside
a loop and compares the outcome to some prede-
fined values. Solving the equation system that these
computations yield by hand would be practically
impossible as well as trying out all 2128 possibilities
for the 16 bytes. That is why we will apply symbolic
execution through KLEE here.

Knowing all this, we can now lift the binary to
LLVM. This is simply done using main as the en-
try point and supplying McSema’s default external
function definitions for Linux to the CFG generator.
Recompiling the original bitcode shows that our
LLVM code still behaves like the original binary, at
least for wrong passwords.

Looking at the LLVM code, we see that there
is the main function, called sub_40079f, and the
internal function b64d:

1 def ine x86_64_sysvcc
2 void @sub_40079f ( %RegState ∗ ) #0 {
3 ; . . .
4 }
5

6 def ine x86_64_sysvcc void @b64d ( %RegState ∗ ) #0 {
7 ; . . .
8 }

In addition to that, there are the inline assembly
snippets generated by McSema at the top to transi-
tion between native and lifted code for all external
functions and main:

1 module asm " . g l o b l sub_40079f ; "
2 module asm " . g l o b l main ; "
3 module asm " . type main , @function "
4 module asm " main : "
5 module asm " . c f i _ s t a r t p r o c ; "
6 module asm " pushq %rax ; "
7 module asm " leaq sub_40079f ( %rip ) , %rax ; "
8 module asm " xchgq ( %rsp ) , %rax ; "
9 module asm " jmp __mcsema_attach_cal l ; "

10 module asm " 0 : "
11 module asm " . s i z e main , 0 b−main ; "
12 module asm " . c f i_endproc ; "

This is a problem here, since we would like to
run the code through KLEE, which can only oper-
ate on actual LLVM code. Thus, it is necessary to
implement driver functions like in Demo 1. First,
we remove all the inline assembly. Then, we write a
simple driver for main, setting up the stack and reg-
ister struct, passing argc and argv and returning
the original return value from RAX:

1 unsigned long s tack [ 4 0 9 6∗1 0 ] ;

2 RegState r e g _ s t a t e ;
3

4 # define qual_main_raw sub_40079f
5 extern void qual_main_raw ( RegState ∗ ) ;
6

7 i n t qual_main_driver ( i n t argc , char ∗∗argv )
8 {
9 memset(& stack , 0 , s i ze of ( s tack ) ) ;

10 memset(& r e g _ s t a t e , 0 , s i ze of ( r e g _ s t a t e ) ) ;
11

12 r e g _ s t a t e . RBP = 0 ;
13 r e g _ s t a t e . RSP = ( unsigned long )&s tack [ 4 0 9 6∗9 ] ;
14

15 r e g _ s t a t e . RDI = ( unsigned long ) argc ;
16 r e g _ s t a t e . RSI = ( unsigned long ) argv ;
17

18 qual_main_raw(& r e g _ s t a t e ) ;
19

20 return ( i n t ) r e g _ s t a t e .RAX;
21 }
22

23

24 i n t main ( i n t argc , char ∗∗argv )
25 {
26 return qual_main_driver ( argc , argv ) ;
27 }

For all external functions, we can simply call
the original functions. One thing that is necessary
here though is to add 8 to the stack pointer in
the register struct, because the lifted code always
pushes a return address to its stack which would
not be cleared otherwise:

1 i n t _puts ( const char ∗s )
2 {
3 r e g _ s t a t e . RSP += 8 ;
4 return puts ( s ) ;
5 }

For convenience, fgets should automatically re-
turn a stub string, so the program does not stop to
wait for input every time:

1 char password [ ] = " t h i s i s t h e i n p u t s t r i n g . . . . " ;
2

3 char ∗ _ f g e t s ( char ∗s , i n t s ize , FILE ∗stream )
4 {
5 r e g _ s t a t e . RSP += 8 ;
6 p r i n t f ( " Skipping f g e t s with stub data .\n" ) ;
7 s t rcpy ( s , password ) ;
8 return s ;
9 }

Compiling the program in this state shows that
it still seems to work:

1 Welcome . Please enter your base64 encoded input :
2 Skipping f g e t s with stub data .
3 Nope .

So far, so good. Now that all inline assembly
code has been replaced, it is possible to run the
program in LLVM through KLEE. However, it is still
necessary to tell KLEE which memory to handle
as a symbolic variable. To do so, we will replace
the internal function b64d, so it will always return
a 16 byte long memory chunk marked as symbolic.
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For this, we implement the function b64d_fake in
C, which operates on a register struct:

1 void b64d_fake ( RegState ∗ r e g _ s t a t e )
2 {
3 r e g _ s t a t e −>RSP += 8 ;
4 char ∗b 64 _s t r = ( char ∗ ) r e g _ s t a t e −>RDI ;
5 unsigned char ∗∗out_buf =
6 ( unsigned char ∗∗ ) r e g _ s t a t e −>RSI ;
7

8 unsigned char ∗buf =
9 ( unsigned char ∗ ) malloc ( 1 6 ) ;

10 klee_make_symbolic ( buf , 16 , " password " ) ;
11 (∗ out_buf ) = buf ;
12

13 i n t r e t = 1 6 ;
14 r e g _ s t a t e −>RAX = ( unsigned long ) r e t ;
15 }

To make sure our function gets called instead
of the original one, we declare it inside the lifted
LLVM module and replace the call to b64d with
b64d_fake:

1 dec l are x86_64_sysvcc
2 void @b64d_fake ( %RegState ∗ ) #0

3

4 def ine x86_64_sysvcc
5 void @sub_40079f ( %RegState ∗ ) #0

6 {
7 ; . . .
8 t a i l c a l l x86_64_sysvcc void @b64d_fake (

%RegState∗ %0) , ! mcsema_real_eip ! 1 8

9 ; . . .
10 }

After compiling our C code with the LLVM code
to a single LLVM bitcode file, we are ready to exe-
cute KLEE:

1 clang [ . . . ] −emit−llvm −c dr iver . c \
2 −o d r i v e r _ k l e e . bc
3 llvm−l i n k d r i v e r _ k l e e . bc qual_opt . bc \
4 −o d r i v e r _ k l e e _ l i n k e d . bc

Running KLEE on the bitcode shows it generated
four test cases:

1 $ klee d r i v e r _ k l e e _ l i n k e d . bc
2 . . .
3 KLEE : done : t o t a l i n s t r u c t i o n s = 1072762

4 KLEE : done : completed paths = 4

5 KLEE : done : generated t e s t s = 4

These test cases should cover all possible control
flow depending on the symbolic variable. So if a
correct password exists, one of the test cases should
contain it. Using ktest-tool, it is possible to read
out example values for each test case. For example,
test case 4 gives us the following information:

1 $ k t e s t−t o o l klee−l a s t / t e s t 0 0 0 0 0 4 . k t e s t
2 k t e s t f i l e : ’ klee−l a s t / t e s t 0 0 0 0 0 4 . k t e s t ’
3 args : [ ’ d r i v e r _ k l e e _ l i n k e d . bc ’ ]
4 num o b j e c t s : 1

5 o b j e c t 0 : name : ’ password ’
6 o b j e c t 0 : s i z e : 16

7 o b j e c t 0 : data : ’\ xb2\xd0cu\x90\x14\xcfB\xf5\
xd90\xf1\x10\xdb−\xa7 ’

The escaped string shown as data encoded in
base64 is stBjdZAUz0L12TDxENstpw==. We can now
run the original binary and see if we have found
the right solution:

1 $ ./ qual
2 Welcome . Please enter your base64 encoded input :
3 stBjdZAUz0L12TDxENstpw==
4 Congratz , you win !
5 Please send your s o l u t i o n to ki rsch ju@sec . in . tum .

de

6 Conclusion

We have shown how McSema translates machine
code to LLVM and used it in a number of practical
demos including performing symbolic execution on
lifted code. What can be seen from these examples
is that, once a correct representation of the code
in LLVM has been obtained, it can be used and
modified in many ways very flexibly. It is also
easily possible to recompile this code to the original
architecture and, with some additional effort, it
would even be possible to compile it for any other
architecture or platform as long as all used external
functions are present.

McSema’s lifted code works on virtual registers,
in the form of variables inside the register struct.
When comparing McSema’s LLVM code to VEX, it
can be observed that what McSema simulates on top
of LLVM is actually very similar to VEX’s built-in
functionality of simulating register state. However,
while VEX is bound very closely to the machine
code, LLVM IR provides much more high level
concepts such as defined functions with parameters.
In addition to that, LLVM IR is designed from the
beginning to be highly transformable while VEX
aims to always transparently represent the original
code.

6.1 Limitations

Because the machine code instructions directly
translated to LLVM result in not one single, but
usually a whole series of LLVM instructions and
a fair amount of boilerplate code is present, the
lifted code gets much harder to read and is thus
less suited for analysing the code by hand. While
the LLVM optimizer in its current form helps elimi-
nating code which is definitely not needed, a certain
amount of noisy code still remains.

Also, because of McSema’s naive translation ap-
proach, variables and function parameters which
were originally compiled from C code for example
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are not represented as LLVM variables and parame-
ters, but indirectly through memory contents and
the register struct.

At the current state, McSema does not support
self-modifying code and exceptions. It is also lim-
ited to x86 and x86_64 and while it supports the
most important instructions, including FPU and
SSE, there are still many missing.

6.2 Future Outlook and Other Projects

For the future, a potential way to counteract the
remaining problems could be implemented by cre-
ating new LLVM passes for these kinds of tasks.
Doing so could be a modular way to make the code
more high-level again step by step. The ultimate
goal would be to have a fully functional decompiler
to LLVM that generates easy to read code.

To extend McSema’s functionality, it is possible to
independently implement the semantics translation
for single instructions because of the way McSema’s
code is built. In addition to that, Trail of Bits have
announced to implement ARM support in 2017 as
part of a blog post [8].

Another project which has to be mentioned is
Remill, developed by the same company as Mc-
Sema, Trail of Bits. At first glance, both projects
look very similar. Remill seperates CFG recovery
from translation just like McSema, for example. But
Remill’s representation of assembly code in LLVM
is very different. While McSema lifts assembly func-
tions as LLVM functions, Remill creates a seperate
LLVM function for each basic block in the CFG. In
general, while McSema aims to provide a repre-
sentation of the program as high level as possible,
Remill does translate to LLVM, but tries to stay very
close to the original assembly code. This makes
McSema better suited for tasks like extracting func-
tionality from binary code to integrate in own code
or partially decompiling and transforming code,
while Remill might be a better choice for dynamic
program analysis tasks such as symbolic execution.
So, in conclusion, if one would like to build a frame-
work similar to Angr, but with LLVM instead of
VEX, Remill seems to be the primary choice. [3]
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