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Abstract

WebAssembly is a standardized general-purpose bytecode language that primarily
targets usage as part of web applications. Next to an English prose specification, it also
has an official formal specification that describes the language semantics unambiguously
in a natural deduction style. This motivates the development of verified tools for static
analysis and optimization, since the formal specification can be used as a direct basis to
verify against. However, this specification of execution by means of reduction rules has
certain inconvenient properties such as mixing data and code, as well as not having
any notion of addresses in a program. This makes the application of techniques such as
Abstract Interpretation impossible in the sense that information should be determined
and stored for specific program points. We overcome these limitations by developing a
new interpreter that uses an explicit call stack and value stack, in addition to explicitly
tracking a program counter on top of immutable code. This interpreter is developed
directly on top of the WebAssembly mechanization developed by Conrad Watt in
Isabelle/HOL, a generic theorem proving and logic system. We then present a proof
for completeness of our interpreter, showing that it can indeed represent any execution
allowed by the WebAssembly specification, which makes it a suitable basis for static
analysis. As a side effect of this, we also show that real-world interpreters taking a
similar approach using explicit stacks and program counters can also cover the entire
WebAssembly language. In addition to the interpreter, we extend the mechanization by
formalizing the specification of integer types and operations, as this part had still been
missing. We also supply executable implementations for these integer operations and
verify them against the specification.
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1 Introduction

1.1 WebAssembly

When JavaScript was introduced in 1995 by Netscape [Net95], it was primarily intended
as an easy to write scripting language for adding dynamic behavior to HTML pages.
Despite the name, the language itself has little to do with the Java programming
language itself. Rather, it was designed for glue code that would bind Java applets
containing potentially large and complex applications to the website they are embedded
in.

With the advent of HTML5 [Wor14], providing features such as video playback
natively, external plug-ins for dynamic content such as Java applets and Adobe Flash
eventually became obsolete [Byl18] [Tea17] and focus shifted towards JavaScript as
the sole target language for implementing complex applications as part of web pages.
However, JavaScript’s characteristics such as weak and dynamic typing are generally
regarded as less suited for development of such large-scale applications. This resulted
in the demand for projects such as TypeScript [Tur14], Emscripten [Zak11] and asm.js
[HWZ], which reduce JavaScript to a mere intermediate language for delivering com-
piled platform-independent code, defeating its original purpose as a human-written
high-level language without the need for a compilation step. Moreover, these projects
still suffer from consequences of its design, such as increased code size, additional
parsing overhead and potentially worse performance when compared against bytecode
languages such as Java.

This situation motivated the creation of an entirely new language that would use
a space-efficient binary format and be closer to real machine architectures, in order
to reduce the workload of a just-in-time compiler or interpreter on a target machine.
In contrast to native machine code, it should still be entirely platform-independent
though. The result was the specification of WebAssembly in 2017 [Haa+17], aiming to
fulfill these goals from the very beginning. The combination of a landscape of different
browsers and runtimes combined with the requirement for code to always have the
same intended behavior on every such platform implies that this language needs to
be specified as unambiguously as possible. As such, in addition to English prose
definitions, the WebAssembly specification also contains formal rules for the entire
language semantics in a natural deduction style.

Such a specification provides an excellent starting point for formal reasoning about
the language, as the given rules translate mostly directly to a formal logic system
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1 Introduction

such as Isabelle/HOL. Indeed, Watt [Wat18] presents an Isabelle specification of the
WebAssembly semantics, along with an executable interpreter that is proven to be
sound with respect to this specification.

1.2 Static Analysis for Optimization

With the desire to run code as fast as possible comes the need for optimization. In the
case of WebAssembly, one must distinguish between optimizations that happen before
code is shipped as bytecode and ones that happen in the final runtime implementation.

The former stage is strictly bound to the possibilities of what can be expressed in the
form of WebAssembly bytecode. It should thus not make too many assumptions of the
runtime’s performance behavior. For example, unrolling a loop that is somehow known
to always perform a fixed number of iterations may avoid checks and aid the CPU to
perform branch prediction. However, it will also increase code size, possibly leading to
more memory having to be fetched and thus less effective usage of caches. As such,
this stage should primarily perform optimizations that are guaranteed to eventually be
beneficial, such as elimination of dead code. In a practical compiler infrastructure, most
of these optimizations may already have been performed before WebAssembly code is
emitted, for example when compiling through the LLVM framework [LA04]. However,
there may be additional optimization passes tailored specifically to the target language,
especially regarding code size, which depends on the exact binary serialization format.
An existing project that is developed specifically to optimize WebAssembly is Binaryen
[Web21a].

Since the actual runtime stage is aware of the machine it is running on, it can adjust
its interpretation or code generation specifically for it, and even take measurements of
code execution for profile-guided optimization. Moreover, it is not bound anymore to
the exact instruction semantics that WebAssembly offers, as long as it can guarantee
that the observed behavior from outside is still preserved. As a concrete example,
WebAssembly instructions that access memory are given a dynamic offset into a block
of bytes of limited size. According to the specification, the runtime should check at
each such access if the offset exceeds this size, and if it does, fall into a trap state, i.e.
crash the program. If it has been previously found out by analysis that, no matter what
input the program receives, at a certain program point, the offset will always fall into a
range that will be valid for access, the concrete check at this point can be avoided. This
may be especially beneficial if this program point is hit frequently.

1.3 Approaching Abstract Interpretation

We will now sketch a concrete approach towards both dead code elimination and
avoidance of bounds checks. In this introductory chapter, the word ”variable” is used

2



1 Introduction

// Input from outside: uint8_t anise;

// anise = [0, 256);

uint8_t wormwood = 5;

// anise = [0, 256); wormwood = [5, 6)

if (anise < 100) {

// anise = [0, 100); wormwood = [5, 6)

wormwood += 4;

// anise = [0, 100); wormwood = [9, 10)

}

// anise = [0, 256); wormwood = [5, 10)

if (wormwood > 42) {

// detected as dead code because ∀x∈[5, 10). x <= 42

}

Figure 1.1: Example of Abstract Interpretation. Comments describe the results of
determined value intervals (the abstract domain) that overapproximate
all possible values of variables at each program point, where [x, y) is the
interval from x (included) to y (excluded).

in an abstract sense to refer to any storage containing a value that may change during
execution. In the concrete case of WebAssembly, this may be for example a local
variable, global variable or stack element, as detailed further in chapter 3.

Regarding dead code elimination, whether a block of code is hit is defined by the
control flow of the program, which in turn is the result of the combination of input data
and conditions that are checked in the code. If for all possible inputs, all conditions
that would lead to a certain code block will be false, this block is considered dead code
and may be removed safely without affecting the observable behavior of the program.

Whether a given condition is always false depends on the set of values that the
variables the condition is made of can have at the program point of the check. As a
consequence of Rices’s theorem [Ric53], determining these exact sets automatically
for any given program would be an undecidable problem. However, it is possible to
overapproximate these sets, meaning that the results may consider values that can
never occur in a real execution, but conversely, every value that may occur in a real
execution is considered.

A method that is commonly used in program analyzers and compilers for calculating
such an overapproximation of semantics is Abstract Interpretation [CC77]. It works by
defining some abstract domain of values that form a complete lattice, of which every
such value is mapped to a set of concrete values. The analysis will then successively
execute the program on these abstract values and accumulate the results at each
program point, which can be seen as fixpoint iteration of a monotone function over
abstract program states. The Knaster-Tarski fixpoint theorem states that every such
function has a least fixpoint. It can also be shown that this is the overapproximation
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1 Introduction

of program states we are looking for. Figure 1.1 shows an example of a abstract
interpretation on a C program. We will not further detail the inner workings of
Abstract Interpretation, but instead refer to the corresponding chapter in the Concrete
Semantics book by Tobias Nipkow and Gerwin Klein [NK14], which develops a verified
Abstract Interpreter in Isabelle/HOL on the educational language IMP.

The main takeaway for us however is that in order to get the information we need to
overapproximate the result of condition checks, we must be able to track information
at each program point in a given WebAssembly program. At the same time, our final
goal is to develop a verified analysis, implying we will eventually have to prove that
this information we track is indeed correct with respect to the official WebAssembly
specification. Unfortunately, as detailed further in section 3.4, the specification in its
original form is unsuitable as a direct base to verify against, because, amongst other
aspects, it has no notion of program points in our sense.

The interpreter developed by Watt [Wat18] shares these same properties and in
addition does not cover non-determinism that WebAssembly explicitly allows. Thus,
for example, it is not suitable to account for different targets having a different amount
of memory available. The verification aspect of this interpreter only considers the
soundness property, i.e. that every execution of it is covered by the specification, but
not every execution allowed by the specification is covered by the interpreter. Thus,
if we would verify our analysis against such an interpreter, the results would only be
valid for this specific one and possibly not for other (sound) interpreters.

Motivated by this situation, we develop a new interpreter that explicitly tracks a pro-
gram counter throughout a given WebAssembly program, as well as covers all possible
non-determinism. We show that it is complete with respect to the mechanization of the
WebAssembly specification from Watt [Wat18], meaning that it will overapproximate
every possible sound WebAssembly interpreter and thus can serve as a base for static
analysis. Furthermore, our interpreter tracks an explicit value and call stack, bringing
it closer to real-world interpreters.

In addition to such an interpreter, in order to get meaningful results, concrete
semantic definitions of integer types and operations are necessary. In our example
of figure 1.1, we need to be able to compare numbers such as 5 and 9 to describe an
interval [5, 10) that contains both of them. We also need to be able to determine that the
operation += 4 applied to any value in the interval [5, 6) will produce a value in [9, 10).
Prior to this thesis, the mechanization of WebAssembly did not define concrete types
for most kinds of integer values and all operations on them were only uninterpreted
functions, making such detailed analysis impossible. We extend the mechanization by
translating the respective part of the official specification to Isabelle/HOL, defining the
concrete types and operations for integers based on the Word Library [Bee+16] and
prove their correctness with respect to the specification.
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1 Introduction

1.4 Background and Notation

Isabelle is a generic logic system and interactive theorem prover that is able to host
different logics. The most widely used one is Higher Order Logic (HOL) and generally
referred to as Isabelle/HOL. The work that is presented in this thesis is built directly on
top of the WebAssembly mechanization by Watt [Wat18], which is formalized entirely
in Isabelle/HOL.

Any code in the following chapters that is written in monospace is such Isabelle code.
For readability, we also make use of classical inference rule notation such as this:

A B name
C

If such a rule refers to a part of the formalization, the given name directly refers to the
respective name in the Isabelle code.

5



2 Integer Types and Operations

As elaborated in section 1.3, many useful instances of Abstract Interpretation need to
reason about the semantics of values that are calculated in a program. Previously, the
WebAssembly mechanization by Watt [Wat18] did not come with any specification for
such values and operations were treated as mere uninterpreted functions.

The WebAssembly specification [Web21b] defines four basic numeric value types:
i32 and i64 for integer and f32 and f64 for floating point values. We will only consider
integers in this thesis as they are more substantial for analysis, given that for example
memory addresses and Boolean conditions are always integers in this language. In the
following chapter, we will thus translate the official WebAssembly specification of these
types to Isabelle/HOL and supply verified implementations for all operations on them.

2.1 Specification

Both i32 and i64 describe integers of the indicated bit widths. Whether they are inter-
preted as signed or unsigned is not defined at the type level but merely a consequence
of what kind of operations are then applied to them. Apart from conversions between
each other, both types share the exact same specifications with the bit width given as a
variable N, such that it is only formulated once on a type iN of arbitrary bit width.

This fact suggests implementing these types in Isabelle in a bit width-agnostic way
too. In order to statically attach the non-zero value N to a type, we make use of the
len type class from HOL-Library. Its definition is shown in figure 2.1. We will use the
LENGTH(’a) :: nat syntax to retrieve the value attached to some type ’a. This allows us
to avoid manually passing N and the assumption that it is not zero every time they are
needed.

class len =

fixes len_of :: ’a itself ⇒ nat

— . . . LENGTH(’a) is set up as syntax for len_of TYPE(’a) . . .
assumes 0 < LENGTH(’a)

Figure 2.1: Shortened definition of the len type class in HOL-Library, which statically
attaches a constant nat value to a type ’a. After instantiating, LENGTH(’a)
conveniently refers to this value.
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2 Integer Types and Operations

2.1.1 Integer Interpretations

At their basis, values of iN in the specification are interpreted as integer numbers in a
mathematical sense in the range [0, 2N − 1]. On top of this, such a number i may be
reinterpreted as a bit vector, that is, as a list of boolean values representing the number
in base two:

ibitsN(i) = dN−1 . . . d0 (i = 2N−1 · dN−1 + . . . + 20 · d0) (2.1)

Our direct translation to Isabelle/HOL, where ’a is any given type in the len type class,
is the following:

definition ibits :: ’a itself ⇒ int ⇒ bool list where (2.2)
ibits _ i ≡ THE l.

length l = LENGTH(’a) ∧
i = (∑ n ∈ {0..<LENGTH(’a)}.

(2 ^ (LENGTH(’a) - n - 1)) * (if l ! n then 1 else 0))

By induction over LENGTH(’a) we prove that for any input value in a sensible range, this
is equal to the bin to bl function from Isabelle’s Word Library, thus giving us access to
all auxiliary lemmas that are defined for it:

0 ≤ i i < 2 ^ LENGTH(’a)
ibits

ibits N i = bin_to_bl LENGTH(’a) i

(2.2) already contains a formula for converting the list l back to its integer value i

and we may use it to define the inverse function ibits−1
N (l) called ibits inv in our

formalization.
Next to the binary conversion is the interpretation as a signed number in twos

complement, shifting numbers greater than or equal to 2N−1 into the negative range:

signedN(i) = i (0 ≤ i < 2N−1) (2.3)
signedN(i) = i− 2N (2N−1 ≤ i < 2N)

Translated to Isabelle, this yields:

definition signed :: ’a itself ⇒ int ⇒ int where (2.4)
signed _ i ≡
if 0 ≤ i ∧ i < (2^(LENGTH(’a)-1)) then

i

else if 2^(LENGTH(’a)-1) ≤ i ∧ i < 2^LENGTH(’a) then

i - (2^LENGTH(’a))

else

0

7



2 Integer Types and Operations

The specification claims that this function is bijective on the given ranges and later
refers to the inversion signed−1

N (i). We show that this is indeed the case:

signed bij

{-(2^(LENGTH(’a)-1)) ..< 2^(LENGTH(’a)-1)}

bij_betw (signed N) {0 ..< 2^LENGTH(’a)}

As such, we are also able to define the inverse function signed inv and make use of it
in later definitions.

2.1.2 Operations

Next, we are going to translate all specified WebAssembly integer operations to Isabelle.
To be bit width-agnostic, they are specified as a type class extending len. This class,
called wasm int ops and shown in Figure 2.2, introduces all operations syntactically,

class wasm_base = zero

class wasm_int_ops = wasm_base + len +

— unops ...

— binops
fixes int_add :: ’a ⇒ ’a ⇒ ’a

fixes int_div_s :: ’a ⇒ ’a ⇒ ’a option

...

— testops ...

— relops ...

— value conversions
fixes int_of_nat :: nat ⇒ ’a

fixes nat_of_int :: ’a ⇒ nat

begin
abbreviation abs_int :: ’a ⇒ int where abs_int a ≡ int (nat_of_int a)

abbreviation rep_int :: int ⇒ ’a where rep_int a ≡ int_of_nat (nat a)

abbreviation abs_int_bits :: ’a ⇒ bool list where
abs_int_bits a ≡ ibits TYPE(’a) (abs_int a)

abbreviation rep_int_bits :: bool list ⇒ ’a where
rep_int_bits a ≡ rep_int (ibits_inv TYPE(’a) a)

abbreviation abs_int_s :: ’a ⇒ int where
abs_int_s a ≡ signed TYPE(’a) (abs_int a)

abbreviation rep_int_s :: int ⇒ ’a where
rep_int_s a ≡ rep_int (signed_inv TYPE(’a) a)

end

Figure 2.2: Bit width-agnostic, purely syntactical definition of integer operations on
some opaque type ’a. Additional conversions to concrete representations
are defined too for further specification of semantics.

8



2 Integer Types and Operations

alongside requiring the conversions int of nat and nat of int between ’a and nat.
On top of these, all previously defined representations are derived as abbreviations
prefixed by abs int and rep int, to and from ’a, respectively.

This type class is extended to another class wasm int by adding all semantic spec-
ifications. As an example, let us consider the case of addition. The WebAssembly
specification defines it as the following equation:

iaddN(i1, i2) = (i1 + i2) mod 2N (2.5)

Using the abs int and rep int conversions to bring values of ’a into the form that this
expects and back, the equation directly translates to Isabelle:

class wasm_int = wasm_int_ops + (2.6)
...

assumes add: int_add (i1::’a) i2 =

rep_int ((abs_int i1 + abs_int i2) mod (2^LENGTH(’a)))

...

Some of the operations are allowed to fail and thus not return any value, for which these
operations in Isabelle return ’a option instead of ’a. The WebAssembly specification
uses a more general set notation to describe all possible result values or the absence of
any. But as it actually only specifies either no or a single result for integer operations,
our option type can sufficiently cover it.

A particularly interesting example of failure cases, which will also need special care
in our concrete implementation, is the signed division idiv sN :

idiv sN(i1, 0) = {} (2.7)
idiv sN(i1, i2) = {} if signedN(i1)/signedN(i2) = 2N−1 (2.8)
idiv sN(i1, i2) = signed−1

N (trunc(signedN(i1)/signedN(i2))) otherwise (2.9)

Here, division results may leave the integer domain and will be represented as rational
numbers instead. A function trunc :: rat ⇒ int is defined that removes any decimal
digits. Using it, signed division may be translated to Isabelle:

assumes div_s_0: i2 = 0 =⇒ int_div_s (i1::’a) i2 = None (2.10)
assumes div_s_nrep:

i2 6= 0

=⇒ rat_of_int (abs_int_s i1) / of_int (abs_int_s i2) = 2^(LENGTH(’a)-1)

=⇒ int_div_s (i1::’a) i2 = None

assumes div_s:

i2 6= 0

=⇒ rat_of_int (abs_int_s i1) / of_int (abs_int_s i2) 6= 2^(LENGTH(’a)-1)

=⇒ int_div_s (i1::’a) i2 = Some (rep_int_s (

trunc (of_int (abs_int_s i1) / of_int (abs_int_s i2))))

9



2 Integer Types and Operations

Besides the intuitive case of division by zero in (2.7) and div s 0, the result of the
specific calculation (−2N−1)/(−1) = 2N−1 falls outside the range [−2N−1, 2N−1 − 1]
and is thus not representable in twos complement. This special case is taken care of by
(2.8) and div s nrep.

2.2 Implementation

This pure specification as a type class does not yet supply any concrete types or
definitions of operations that may actually be executed. We will supply these now by
reusing types and functions from Isabelle’s Word Library [Bee+16] as much as possible
and prove that they fulfill the specification.

2.2.1 Definitions

Concrete i32 and i64 types are defined as typedefs without further restrictions and
may be directly brought into the len and wasm base type classes:

typedef i32 = UNIV :: (32 word) set .. (2.11)

instantiation i32 :: wasm_base begin
lift definition zero_i32 :: i32 is of_nat 0 .

end

instantiation i32 :: len begin
definition len_of_i32 :: i32 itself ⇒ nat where len_of_i32 _ = 32

end

i64 is defined analogously. While working towards also bringing both types into the
full wasm int type class, we again strive to avoid code duplication as much as possible.
This approach does require a certain amount of boilerplate code in Isabelle, but the
significant advantage is that all heavyweight definition and proof code may eventually
be written down only once. The idea is to first abstract both typedefs as a locale
Wasm Int Word, inside which all necessary definitions and proofs can be prepared to a
degree that later instantiating wasm int for the concrete types will be trivial:

locale Wasm_Int_Word = (2.12)
fixes rep :: ’a :: {len, wasm_base} ⇒ ’n :: len word

fixes abs :: ’n word ⇒ ’a

assumes length[simp]: LENGTH(’a) = LENGTH(’n)

and abs_rep:
∧
x. abs (rep x) = x

and rep_abs:
∧
x. rep (abs x) = x

and rep_0: rep 0 = 0

10



2 Integer Types and Operations

Here, ’a is the concrete integer type and ’n is the type argument given to the
Word Library’s ’n word. With rep and abs being the respective Rep i32/Rep i64 and
Abs i32/Abs i64 constants given by the typedefs, interpreting this locale for our types
becomes straightforward.

Inside the locale, concrete definitions are given for all operations on ’n word. For
example for addition the (+) operator from the Word Library is used directly:

definition int_add :: ’n word ⇒ ’n word ⇒ ’n word where (2.13)
int_add ≡ (+)

Let us again consider signed division as a more complex example. The Word Library
provides an operator (sdiv) :: ’n word ⇒ ’n word ⇒ ’n word as a total function on
’n word, mapping our cases (2.7) and (2.8) to some bogus values. To build the partial
function defined by WebAssembly on top of it however, both specified failure cases have
to be caught explicitly and mapped to None. This is done exactly as specified for division
by zero by checking whether the right operand is equal to 0. The unrepresentable case
needs extra care though. Because the result of (sdiv) is already a valid ’n word, it is
impossible to determine from this final result alone whether the underlying division
would have left the respective range. Instead, the operands are again checked to
explicitly avoid the specific case (−2N−1)/(−1) = 2N−1, leading to the final definition
of int div s:

definition int_div_s :: ’n word ⇒ ’n word ⇒ ’n word option where
int_div_s i1 i2 ≡
if i2 = 0 ∨ (i1 = of_int (-(2^(LENGTH(’n) - 1))) ∧ i2 = of_int (-1))

then None

else Some (i1 sdiv i2)

2.2.2 Proof against Specification

With all definitions in place, the goal is to prove that they fulfill all properties given
by the wasm int type class. As we are still inside the Wasm Int Word locale with abstract
type ’a, we can not yet actually instantiate the class for this type yet. However, it is
still possible to interpret the underlying (automatically generated) locale of wasm int,
in order to obtain a fact that will make future interpretations based on it trivial.
More concretely, a sublocale relationship between Wasm Int Word and wasm int can be
established where all required constants are lifted through abs and rep to account for
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the typedef nature of i32 and i64:

abbreviation lift2 ≡ map_fun rep (map_fun rep abs)

abbreviation lift2o ≡ map_fun rep (map_fun rep (map_option abs))

sublocale Int: wasm_int where (2.14)
... and int_add = lift2 int_add and ...

... and int_div_s = lift2o int_div_s and ...

Wherever the definitions of operations given by the Word Library sufficiently match
the WebAssembly specification, the proof goals are solved by only simplification. Other
operations require additional effort, such as again signed division. Previously, while
composing the definition to account for (2.8), we have blindly assumed that this case
is hit exactly when the operand match the ones in our specific check. In other words,
i1/i2 = 2N−1 if and only if i1 = −2N−1 and i2 = −1. And indeed, we show that this is
the case:

lemma sdiv_nrep: (2.15)
(i1::’a::len word) = of_int (-(2^(LENGTH(’a)-1))) ∧ i2 = of_int (-1)

←→ rat_of_int (sint i1) / of_int (sint i2) = 2^(LENGTH(’a)-1)

With the proof for the wasm int sublocale finished, we leave the Wasm Int Word locale
context and may now easily instantiate the actual wasm int class for i32 and i64 by
making use of Wasm Int Word.

interpretation I32: Wasm_Int_Word Rep_i32 Abs_i32 (2.16)
instantiation i32 :: wasm_int begin
...

lift definition int_add_i32 :: i32 ⇒ i32 ⇒ i32 is I32.int_add .
lift definition int_div_s_i32 :: i32 ⇒ i32 ⇒ i32 option is I32.int_div_s .
...

instance
...

by (rule I32.Int.wasm_int_axioms[...])

end

The instantiation for i64 is carried out analogously, which wraps up our integer
implementation.
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The official WebAssembly specification [Web21b] describes the semantics of the lan-
guage in the form of small step rules for all individual instructions. As mentioned
previously, these rules are given in both an English prose form for intuitive under-
standing by a human reader, as well as a formal one in a natural deduction style.
Henceforth, when referring to the formal specification, we will only refer to the existing
Isabelle/HOL formalization from Watt [Wat18], as we will later directly build upon
it. It follows the original specification exactly, with a few minor exceptions that are
described in the respective paper.

WebAssembly is often loosely described as a stack-based language, meaning that a
stack of operand values is tracked as the program is executed. Each instruction may
pop a certain amount of entries from the stack, perform some operation using these
values and push a result back onto the stack to be consumed by subsequent instructions.
This concept has been well-known for a long time, for example as part of Java bytecode
[Lin+15] or the Forth programming language [The80]. Figure 3.1 shows an example of
a (simplified) WebAssembly prose specification, in this case for the Binop instruction
that computes a binary operation such as addition or subtraction. It shows the explicit
operations of interacting with the operand stack.

1. Assert: due to validation, two values of value type t are on the top of the stack.
2. Pop the value t.const c2 from the stack.
3. Pop the value t.const c1 from the stack.
4. Let c be a possible result of computing binopt(c1, c2).
5. Push the value t.const c to the stack.

Figure 3.1: Simplified prose specification for the Binop instruction. binopt(c1, c2) may
for example be the addition of c1 and c2.
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3.1 Configurations

Interestingly, the accompanying formal specifications do not have an explicit notion of
a pure value stack and instead, operand values are recorded as part of a list of (nested)
instructions. Concretely, the state of a program, called a configuration, is expressed as
a tuple (|s;f;es|) where

s :: s denotes the store, i.e. an object that contains all available global state such as
function closures, memory and global variables,

f :: f is called a frame, containing any state local to an invoked function, such as local
variables, and

es :: e list is the list of instructions to be executed.

Figure 3.2 shows the according Isabelle definitions of these types. Notice also the added
syntax $ and C for converting a basic instruction to an administrative instruction and
converting a value to a constant instruction, respectively. For example, $C v would
expand to Basic (EConst v). $* and $C* map these operations over entire lists. The
syntax at > rt :: tf denotes the function type Tf at rt of arguments and return
values typed according to the lists at and rt, respectively.

inst, as part of the frame f contains types and indices into the global store. This is
particularly important when multiple modules are loaded simultaneously into the same
store. In such a case, the objects from each module will be appended one after the other
to the respective lists contained in the type s, as part of a process called instantiation.
Code which refers to these objects by index however is kept unchanged, so the instance
inst is created as an indirection of indices from code to indices in the store.

All instructions that can be present in raw WebAssembly code are represented by b e.
For the instruction list es in a configuration however, these are extended to the type
e by additional so-called administrative instructions. These are only created as part
of the execution and are not present in the binary format that a module is typically
loaded from.

A specialty of WebAssembly in contrast to other assembly-like languages is the
fact that it employs structured control flow. Instead of an explicit goto, it uses the
instructions Block, Loop and If, which themselves contain a list of instructions. Thus, a
full program takes the form of a tree. The details of how this concept of control flow
works in practice will be explained in section 3.2.1.
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type synonym i = nat

datatype — value types
t = T_i32 | T_i64 | T_f32 | T_f64

datatype — function types
tf = Tf t list t list (_ ’_> _ 60)

datatype — values
v =

ConstInt32 i32

| ConstInt64 i64

| ConstFloat32 f32

| ConstFloat64 f64

datatype — basic instructions
b_e =

Unreachable

| Nop

| Drop

| Select

| Block tf b_e list

| Loop tf b_e list

| If tf b_e list b_e list

| Br i

| Br_if i

| Br_table i list i

| Return

| Call i

| Call_indirect i

| Get_local i

| Set_local i

| Tee_local i

| Get_global i

| Set_global i

| Load t (tp × sx) option a off

| Store t tp option a off

| Current_memory

| Grow_memory

| EConst v (C _ 60)

| Unop t unop

| Binop t binop

| Testop t testop

| Relop t relop

| Cvtop t cvtop t sx option

record inst = — instances
types :: tf list

funcs :: i list

tabs :: i list

mems :: i list

globs :: i list

record s = — store
funcs :: cl list

tabs :: tabinst list

mems :: mem list

globs :: global list

record f = — frame
f_locs :: v list

f_inst :: inst

datatype e = — administrative instructions
Basic b_e ($_ 60)

| Trap

| Invoke i

| Label nat e list e list

| Frame nat f e list

abbreviation to_e_list

:: b_e list ⇒ e list ($* _ 60)

where
to_e_list b_es ≡ map Basic b_es

abbreviation v_to_e_list

:: v list ⇒ e list ($C* _ 60)

where
v_to_e_list ves ≡ map (λv. $C v) ves

Figure 3.2: Basic types that make up a WebAssembly configuration (|s;f;es|).
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3.2 Reduction Relation

Whether one configuration can step to another in the sense of small step semantics is
described by the relation (|s;f;es|) ; (|s’;f’;es’|), of which an excerpt is shown in
figure 3.3. Many instructions only affect es but leave s and f untouched. For these, the
simplified relation (|es|) ; (|es’|) is used.

Notice how the rule for Binop from figure 3.1 is now represented as (|[$C v1, $C v2,

$(Binop t op)]|) ; (|[$C v]|), assuming that v is the result of the binary operation op

applied to v1 and v2. Intuitively, this means that a program consisting exactly of two
constant instructions and one Binop instruction is reduced to the result of the respective
computation.

Of course, practical programs will not consist only of a single operation and its
operands, so these rules must be extended to the greater context of an entire program,
which is the purpose of the label rule. The Lfilled predicate used by it is the key to es-
tablishing this context. Lfilled k lholed es les means that es :: e list is contained
within les :: e list with its surrounding context defined by lholed :: Lholed. Or in
other words: les is the list es with surrounding code defined by lholed added. If then
the smaller es can be reduced to some es’, the larger les can also be reduced to les’,
which is es’ surrounded by the same context lholed.

Before diving into the exact definitions of Lfilled and Lholed, we will trust our
intuition on what they should do and show the idea by an example. Figure 3.4 shows
a simple program that is being executed. For the first step, we notice that by rule
binop Some:

(|[$C 1337, $C 123, $Binop Add]|) ; (|[$C 1460]|) (3.1)

In addition, we find some k and lholed that describe a prefix of [$C 1502] and a suffix
of [$Binop (_Suc)]. We can then embed our two states from (3.1) to derive the Lfilled

predicate for the respective full lists:

Lfilled k lholed (3.2)
[$C 1337, $C 123, $Binop Add]

[$C 1502, $C 1337, $C 123, $Binop Add, $Binop Suc]

Lfilled k lholed (3.3)
[$C 1460]

[$C 1502, $C 1460, $Binop Suc]

Finally, (3.1) (3.2) and (3.3) combined match the premises for the label rule from
Figure 3.3, letting us conclude the full step performed in figure 3.4. The resulting
program is the reduced further in figure 3.5. As soon as the instruction list consists
either of only of constant instructions, or a single Trap instruction, the program is
considered to have terminated, which is now the case.
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unop
(|[$C v, $Unop t op]|) ; (|[$C (app_unop op v)]|)

app_binop op v1 v2 = Some v
binop Some

(|[$C v1, $C v2, $Binop t op]|) ; (|[$C v]|)

length vs = n length t1s = n length t2s = m
block

; (|[Label m [] (($C* vs) @ ($* es))]|)
(|($C* vs) @ [$Block (t1s _> t2s) es]|)

length vs = n length t1s = n length t2s = m
loop

; (|[Label n [$(Loop (t1s _> t2s) es)] (($C* vs) @ ($* es))]|)
(|($C* vs) @ [$Loop (t1s _> t2s) es)]|)

(|e|) ; (|e’|)
basic

(|s;f;e|) ; (|s;f;e’|)

call
(|s;f;[$(Call j)]|) ; (|s;f;[Invoke (sfunc_ind (f_inst f) j)]|)

Lfilled k lholed es’ les’

Lfilled k lholed es les

(|s;f;es|) ; (|s’;f’;es’|)

label
(|s;f;les|) ; (|s’;f’;les’|)

(|s;f;es|) ; (|s’;f’;es’|)
local

(|s;f0;[Frame n f es]|) ; (|s’;f0;[Frame n f’ es’]|)

Figure 3.3: An excerpt of the reduction relation describing the small step semantics of
WebAssembly. Rules that do not make use of the store or frame and are thus
specified as (|es|) ; (|es’|) are lifted to the full form (|s;f;es|) ; (|s;f;es’|)
by the basic rule.
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[
$C 1502,

$C 1337,

$C 123,

$Binop Add,

$Binop Sub

]

;

[
$C 1502,

$C 1460,

$Binop Sub

]

Figure 3.4: Reduction of an addition instruction (yellow) embedded in a surrounding
context (grey). Additional constants necessary in the mechanization have
been elided for brevity.

[
$C 1502,

$C 1460,

$Binop Sub

]

;
[
$C 42

]

Figure 3.5: Reduction of an subtraction instruction (yellow) without any surrounding
context.

Non-Deterministic Reduction Derivations

Keep in mind that the sequence of rules to apply in order to derive a given reduction is
not unique. For example, instead of defining k and lholed as we did, we may first apply
the label rule with a context describing only the prefix [$C _ 1502] and an empty
suffix. Then we could apply the rule again with an empty prefix and the suffix [$Binop

_ (_Suc)], which eventually leads to the same reduction. It is even possible to apply
this rule with an empty context, which makes it conclude the exact reduction given as a
premise. By this, it is theoretically possible to derive any reduction by itself an arbitrary
number of times before progressing further. With the exception of the Trap instruction,
this does not affect which actual steps that can be taken by a program though. It is
merely a detail regarding the ways to show that these steps can be taken.

3.2.1 Control Flow using Labels

Until now, we have only considered purely linear programs, that is, programs without
any instructions affecting the control flow. As hinted before, WebAssembly’s way of
implementing control flow is quite special in the way it implements structured control
flow. The three relevant instructions here are Block, Loop and If. Because If itself is
turned into a Block in a first step at runtime, we only need to consider the execution of
Block and Loop now.

Both of these consist of a function type specifying the number and individual types
of input and output values, and a list of instructions contained in the block or loop.
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[

$C 42,

$Block ([T_i32] _> [T_i32]) [

C 1,

Binop Add

]

]

;

[

Label 1 [] [

$C 42,

$C 1,

$Binop Add

]

]

Figure 3.6: Reduction of a Block to a Label. One constant instruction is moved into the
label according to the argument list of the Block’s type.

[

Label 1 [$Loop [C 1, Binop Add, Br 0]] [

$C 5,

$Br 0

]

]

;

[

$C 5,

$Loop [

C 1,

Binop Add,

Br 0

]

]

Figure 3.7: Reduction of a Br 0 instruction, which replaces the innermost label by its
continuation, in this case a Loop, with appropriate arguments prepended.

Whenever an instruction Block bs or Loop bs is hit during execution, it is unfolded
to a Label es (($C* vs) @ ($* bs)) administrative instruction, where vs is a list of
input values of the appropriate length taken from before the instruction. es :: e list

is a special additional instruction list called the label’s continuation. This process of
reduction is illustrated in Figure 3.6. As soon as such a Label is present, it can be
expressed as part of a context for the Lfilled predicate, which has the consequence
that the instructions inside of it will be reduced in the following steps.

Complementing Block and Loop exists the Br instruction, which, depending on the
situation, may be regarded as the equivalent of either the break or continue statement
in classic imperative languages such as C. Br i means that the i-th label in the current
hierarchy of nested labels should be ”broken out of”. Counting of labels starts from
the inside, such that Br 0 will target the innermost label directly surrounding the Br.

Breaking out of a Label (n :: nat) (es :: e list) (les :: e list) concretely means
that the label currently containing les is replaced entirely by its continuation es

prepended with n constants taken from just before the Br.
Figure 3.7 shows an example for this behavior. When a Loop is unfolded, the

continuation of the label becomes a clone of the initial Loop instruction itself. This has
the effect that when this label is targeted by a Br, the entire label is again replaced by
the loop, only with updated input values. This causes this Loop to be entered yet again
in the next step, giving the Br a meaning similar to continue in C.

In the case of a Block, the continuation is empty, like in figure 3.6. Thus, a Br would
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behave like break in C by dissolving the label into only some output values.

3.2.2 Establishing Context with Lfilled

With the knowledge of labels, we can finally explain the concrete definition of Lholed,
as used by the label reduction rule. This recursive definition, as it appears in the
mechanization, is shown in figure 3.8.

datatype Lholed =

— L0 = v* [<hole>] e*
LBase v list e list

— L(i+1) = v* (label n e* Li) e*
| LRec v list nat e list Lholed e list

inductive Lfilled :: nat ⇒ Lholed ⇒ e list ⇒ e list ⇒ bool where
L0:[[lholed = (LBase vs es’)]]
=⇒ Lfilled 0 lholed es (($C* vs) @ es @ es’)

| LN:[[lholed = (LRec vs n es’ l es’’); Lfilled k l es lfilledk]]
=⇒ Lfilled (k+1) lholed es (($C* vs) @ [Label n es’ lfilledk] @ es’’)

Figure 3.8: Definitions of the Lfilled predicate and accompanying Lholed type, describ-
ing that a list of instructions es is contained within some larger list and
surrounded by a context defined by lholed.

There are two cases how Lfilled can be established. As the base case defined by the
L0 rule, a given list may be prepended and appended by additional constants and
instructions, respectively, using the LBase constructor to describe these surroundings.
Building on top of that, additional labels can be added around using the LN rule. Here,
an already Lfilled list is embedded in a label with additional prefix and suffix. The
LRec constructor recursively contains the inner Lholed along with the additional n and
es’ values to fully define the Label instruction.

It has been shown by [Wat18] that this predicate is deterministic in its last argument,
proving that this relation is a partial function:

Lfilled k lfilled es les Lfilled k lfilled es les’ lfilled deterministicles = les’

(3.4)

This, along with similar properties, plays a key role in reasoning about reductions of
programs. In particular, for rule label in figure 3.3, if k, lholed, es and es’ are given,
then les and les’ are uniquely defined.
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3.3 Typing

In order to ensure that a program will never get stuck or otherwise reach an invalid
state not covered explicitly by a Trap, WebAssembly is statically typed. In addition to
other properties that must be fulfilled by a module to be considered well-typed, the
specification describes a relation C ` bs : at > rt describing that a piece of code bs

consumes a specific number of constants matching the types given by at and returns
constants according to rt. This property is constrained to the context C, which contains
all necessary information coming from outside the code block itself, such as the types
of global and local variables.

For example, typing of a Binop instruction is defined by the following rule:

binop t agree op t
binop

C ` Binop t op : [t, t] > t

This means that a Binop instruction consumes two constants and returns one. All these
values must be of the same type t and this type must be compatible with the operation
op. Such individual typing rules are also extended to arbitrarily structured code in an
inductive way, similar to reduction.

The specification states that a module must be fully type-checked by the runtime
before its code may be executed. This means that when analyzing code in a practical
case, it is generally sufficient to only consider code that is already checked and known
to be well-typed. Thus, all properties that can be derived from typing can be made use
of for free.

3.4 Takeaways

The main takeaway of how execution is specified by means of the reduction relation
is that in its original form, WebAssembly has no notion of program addresses or a
program counter. As soon as the first reduction has been applied to a given program,
any direct correspondence between the program and the current state is immediately
lost, making it impossible to attach certain properties to positions in the program by
means of Abstract Interpretation.

This is why in the next chapter we will present an interpreter that overcomes these
limitations and show that it covers the entire WebAssembly execution specification.
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As previously mentioned, our newly-developed interpreter is designed to have the
following characteristics:

• An explicit program counter is tracked on top of immutable code.

• Both the call stack and value stack are explicitly stored.

• The interpreter is complete, i.e. from a given interpreter state, all states that are
reachable by means of reduction can also be reached by the interpreter. As a
consequence of this and non-determinism being present in the reduction relation,
the interpreter is non-deterministic too.

The high-level idea for verification is that every state of such an interpreter may
be reconstructed to exactly one WebAssembly configuration. If, for any interpreter
state state, if its reconstructed configuration (|s;f;es|) may be reduced to another
configuration (|reduced s;f’;es’|), we are able to show that our interpreter can step
from state to some state’ whose reconstruction is exactly (|reduced s;f’;es’|), then
we have proven completeness. This approach is illustrated in figure 4.1.

The following sections will present the design of data structures and functions
composing this interpreter, as well as outline the proof for completeness.

4.0.1 One-to-one Correspondence

One final goal of the interpreter is to be able to provide a one-to-one correspondence
between interpreter steps and reductions, which is necessary to directly relate the two

state

(|s;f;es|)

state’

(|s’;f’;es’|)

reconstruct reconstruct

step

reduce

Figure 4.1: Illustration of the relationship between interpreter steps and reduction of
WebAssembly configurations. Any interpreter state can be reconstructed to
a configuration. If this configuration can be reduced further, the interpreter
can also step to a state that reconstructs to the same result.
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processes in a proof. There are two kinds of incidents that would initially prevent this:

1. A single step of the interpreter corresponds to multiple reductions being applied
after another. (4.1)

2. A single reduction requires multiple steps in the interpreter. (4.2)

The first case is tackled directly in the interpreter implementation. This is done by
artificially introducing intermediate states that are more fine-grained than the most
intuitive implementation of an interpreter would require. While they hold no concrete
value for the interpreter itself, the reconstruction can make use of them and build the
instruction list accordingly.

The second case will only be dealt with at a later point by simply stepping the
interpreter multiple times whenever needed.

4.1 Implementation

4.1.1 State

The very core of the interpreter is formed by its state type c state, which is shown in
figure 4.2. It represents an entire state of a program being executed. The prefix c is
used here and in future definitions to disambiguate constants and types belonging to
our interpreter from other entities of the same short names.

Identical to s in a WebAssembly configuration (|s;f;es|), a global store is saved in
the field c s. This is where the similarities end though. Our interpreter represents the
local state of a single function invocation as a triple (pc :: c pc, locs :: v list, vs

:: v list) where

• pc is the program counter,

• locs contains all local variable contents and

• vs is the value stack.

record c_state =

c_s :: s — store
c_pc :: c_pc — program counter
c_locs :: v list — local variables
val_stack :: v list

call_stack :: (c_pc × v list × v list) list — pc × locs × vs
trapped :: bool — an instruction has trapped
returning :: bool — special state just before returning from a function
terminated :: bool — final result state, no further stepping possible

Figure 4.2: Data structure representing an entire state of the interpreter.
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The triple of the current function is unfolded in c state as the fields c pc, c locs

and val stack while triples of all functions currently on the call stack are saved in
call stack.

In addition, three Boolean flags are present:

• trapped indicates that some instruction has resulted in a runtime error, corre-
sponding to having generated a Trap instruction in a WebAssembly configuration.

• return is a special case that is present just before the current call stack frame
returns. It has no practical use on the level of the pure interpreter, but will recon-
struct slightly differently and is necessary to correctly represent the respective
WebAssembly reductions.

• terminated is true when execution has finished. No further stepping is possible
then and the final results may be taken from the value stack.

4.1.2 Addressing

The type c pc of the program counter, as shown in figure 4.3, is slightly more involved
than one might initially expect. First, the c fi field defines the current function as
an index into the store. c ei is then an index into the code of this function, pointing
to the next instruction to be executed. Finally, c d is used to explicitly track artificial
intermediate states of instructions that can only be fully reduced in multiple iterations,
as described by (4.1). The c d type is a datatype with multiple constructors representing
specific kinds of states, and one constructor D None for when no such state is used.

record c_pc =

c_fi :: nat — closure (function) index in the store
c_ei :: nat — index of the instruction inside the function
c_d :: c_d — intermediate state info for instructions that take up multiple steps

Figure 4.3: Data structure representing a program counter for a single function invoca-
tion.

Since execution will very commonly advance a program counter pc :: c pc in either
c ei or c d, additional syntax is introduced for these cases:

• pc I 1 increases c ei by 1 and resets c d to D None.

• pc ∇ d keeps c ei and replaces c d by d.

As WebAssembly programs with code nested in Block, Loop and If instructions form
a tree structure rather than a simple list, addressing the contained instructions by
the single natural number in c ei is non-trivial. Figure 4.4 shows an example of how
addresses are assigned in our implementation by flattening the tree structure. Notice
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that every closing bracket of every (nested) instruction list is also given its own address.
Thus, the position directly after the last instruction inside of the Block is not equal to
the position after the Block itself. These brackets may also be conceived as implicit
”end” instructions, as sometimes found in WebAssembly code listings.

[

0 C 42,

1 Block ([T_i32] _> [T_i32]) [

2 C 1,

3 Binop Add

4 ],

5 Unop Popcnt

6 ]

Figure 4.4: Addressing of instructions in a nested WebAssembly program by natu-
ral numbers. In addition to all explicit instructions, closing brackets are
assigned addresses too.

To determine the instruction for a given address in a list of instructions, a function
fetch :: b_e list ⇒ nat ⇒ f_e option is implemented. It returns None if the address
was outside the boundaries of the given list, or an instance of f e shown in figure 4.5.
This may be either a concrete basic instruction or a special value signifying the end of
some list, possibly a contained sub-list.

datatype f_e =

FB b_e — regular fetched instruction
| FEnd — exactly at the end of some Block/Loop/If

Figure 4.5: Fetched instruction type, either a concrete basic instruction or the end of a
(nested) list.

4.1.3 Stepping

Execution on a state is implemented by the function c step :: c state ⇒ c state set,
shown in figure 4.6. The fact that the return type is a set of states rather than a single
state already indicates that stepping is non-deterministic.

If any of the specific Boolean flags is set, it takes precedence and stepping branches
off accordingly. If the program counter is currently at the end of some list inside
the current function, it is advanced by the c step out function. Otherwise, the step
is performed by c step d, taking into account both the fetched instruction b and the
optional intermediate state taken from c d.

If no explicit intermediate state is currently stored in c d, this will eventually result
in a step depending on b.
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definition c_step :: c_state ⇒ c_state set where
c_step state ≡
if terminated state then {}

else if returning state then { c_return state }

else if trapped state then c_step_trap state

else

(case s_fetch (c_s state) (c_pc state) of

FB b ⇒ c_step_d (c_d (c_pc state)) b state

| FEnd ⇒ { c_step_out state })

Figure 4.6: Root stepping function of the interpreter, branching off to individual cases
depending on the current state and program code.

Numeric Instructions and Trapping

As an example of the stepping for an instruction, the implementation of Binop is the
following:

c_step_op (Binop t op) state =

(case val_stack state of v2 # v1 # vs ⇒
(case app_binop op v1 v2 of

Some v ⇒
{ state(| (4.3)

c_pc := c_pc state I 1,

val_stack := v # vs

|) }

| None ⇒
{ state(| (4.4)

trapped := True,

c_pc := c_pc state I 1,

val_stack := vs

|) })

| _ ⇒ {})

Here, (4.4) is the implementation of Binop Some as seen previously in figure 3.3. Instead
of consuming two preceding constant instructions in some instruction list, these values
are taken directly from the stack and the binary operation is applied to them. If the
operation is successful, the resulting value is pushed back to the stack and the program
counter is advanced by one.

In case app binop fails and returns None, the trapped flag is set. At this level, this also
differs fundamentally from the reduction rule, where a Trap instruction is generated
in-place:

app_binop op v1 v2 = None
binop None

(|[$C v1, $C v2, $Binop t op]|) ; (|[Trap]|)
(4.5)
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Constant Instructions

Stepping over a constant instruction C v is defined explicitly too, by simply pushing v

to the stack:

definition c_step_const :: v ⇒ c_state ⇒ c_state where (4.6)
c_step_const v state ≡ state(|
c_pc := c_pc state I 1,

val_stack := v # val_stack state

|)

...

c_step_op (C v) state = { c_step_const v state }

Interestingly, unlike for all other instructions, there exists no reduction rule for constants.
This is only sensible though, because instructions such as Binop automatically consume
the constants preceding them as their operands. In our classical stack machine however,
it becomes necessary as operands are taken from the explicit stack. This is the only case
where the interpreter must perform more steps than reductions would do, representing
(4.2).

Artificial Intermediate States

Let us now see how c d is used to introduce intermediate states to exactly correspond
to single reductions, in order to avoid (4.1). One instruction where this is necessary is
Tee local j, which can be used to set the contents of a local variable to a value taken
from the stack. But unlike Set local j, it keeps this value on the stack, rather than
removing it. In fact, its reduction rule is defined simply by duplicating the respective
constant and then transforming into a Set local instruction:

tee local
(|[$C v, $Tee_local i]|) ; (|[$C v, $C v, $Set_local i]|)

length vi = j
set local

; (|s;(|f_locs = (vi @ [v’] @ vs), f_inst = i|);[]|)
(|s;(|f_locs = (vi @ [v] @ vs), f_inst = i|);[$C v’, $Set_local j)|)

To simulate this behavior on top of immutable code, the interpreter duplicates the
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topmost stack element and then descends into an intermediate D Set local j state:

c_step_op (Tee_local j) state = (4.7)
(case val_stack state of

v # vs ⇒ {state(|
c_pc := c_pc state ∇ D_Set_local j,

val_stack := v # v # vs

|) }

Finally, both Set local and D Set local may share the same stepping code:

c_step_op (Set_local j) state = c_step_set_local j state (4.8)
c_step_d (D_Set_local i) b state = c_step_set_local i state

Non-determinism

As elaborated previously, one of the primary goals of our interpreter is to cover fully
all possible non-determinism allowed in WebAssembly. One example of where non-
determinism is present is the Grow memory instruction, which may succeed or fail, but
WebAssembly does not put any restriction on when it is allowed to fail. It can be
seen as similar to how malloc in C is always allowed to fail and return NULL any time.
That is because the available amount of memory may differ significantly depending
on the target device. The relevant part of the implementation in our interpreter is the
following:

c_step_op Grow_memory state = (4.9)
...

(case mem_grow (mems (c_s state)!j) (nat_of_int c) of

Some mem’ ⇒ { state(| ... |) } ...)

∪ { state(| — failure
c_pc := c_pc state I 1,

val_stack := ConstInt32 int32_minus_one # vs

|) }

...

Notice how the union is always taken of the succeeded state and a failure state.

4.2 Reconstruction

We will now outline the idea of how a WebAssembly configuration (|s;f0;es|) is
reconstructed from an interpreter state of type c state. s is taken directly from the
state’s c s field. The f of this configuration may in fact be chosen arbitrarily here, as
the only reduction rule that may be applicable on our reconstructed configuration on
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[Frame 1 f1 [Label 1 [] [$C 45, , $Binop Sub]]]es =

[Frame 1 f2 [Label 1 [] [$C 8, , Unop Ctz]]]

[ ]

call stack ! 0

(c pc, c locs, val stack)

Figure 4.7: Illustration of nested Frame instructions reconstructed from the interpreter
state’s call stack. Function code is recursively filled at the current program
counter with the next inner frame.

the outermost level will be local, shown in figure 3.3, which ignores the contents of f0
entirely. This leaves us with the (administrative) instruction list es. In the Isabelle code,
reconstruction of this is implemented by the function c es :: c state ⇒ e list. The
algorithm that it uses is outlined below.

4.2.1 Call Frames

The instruction list es will contain any local information of all current call frames. The
idea for how it is structured is illustrated in figure 4.7. Starting from the outermost triple
on the call stack, Frame instructions are created recursively, containing the respective
function code that has already been partially reduced according to the current state. In
each such triple, the current program counter is exactly the point where the next inner
function will return to when it has finished. Thus, this is the position where the next
inner triple’s Frame will be placed.

When the innermost frame has been reached, which is given by the triple (c pc

state, c locs state, val stack state), the next filling list is simply an empty list in
most cases, terminating the recursion. Only in the case when the state has trapped, a
single Trap instruction will be filled in here, according to rules such as (4.5).

This part of the reconstruction is implemented by the function c es frame :: ... ⇒
(c pc × v list × v list) list ⇒ e list by recursing over the given list of triples.

On a side note, WebAssembly defines every Frame to contain a single additional Label
at the root with the actual code contained inside of it. This frame is only dissolved in
the very last step just before the entire frame returns, unfolding its contained constants
or Trap instruction. This special state is what the returning flag in our interpreter state
is used to describe.

4.2.2 Local Code

With the high-level recursion of call frames in place, what is left is to develop an
algorithm that, given an original, immutable function code, generates exactly the list
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of instructions that this code would have reduced to for a given program counter and
value stack. The approach described in the following sections is implemented in the
function c es at :: ... ⇒ e list in the Isabelle code.

Pure Linear Code

For code without Block, Label and If instructions, this task is easy. Let us consider the
following original function code:

[ (4.10)
0 C 34,

1 C 13,

2 Binop Sub

3 C 2,

4 Binop Mul

5 ]

We assume that the c ei part of our program counter points is 4, c d is D None and the
the list describing the value stack is [2, 21]. The resulting reduced instruction list is
generated by prepending the part of the program that is yet to be executed by the value
stack converted to constant instructions in reverse order:

[ (4.11)
$C 21,

$C 2,

$Binop Mul

]

Notice that, as indicated by the $ prefixes, this list now contains administrative instruc-
tions rather than pure basic instructions as in the original code.

Descending into Instructions

Going back to the Tee local instruction from section 4.1.3, we have introduced the
special D Set local j value in c d to indicate its intermediate reduction state. Consider
the following program code:

[ (4.12)
0 C 5,

1 Tee local 1

2 Nop

3 ]
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Now, we assume that the value stack is currently [5, 5] and the program counter
contains 1 in c ei and D Set local 1 in c d. This would be the result after executing
the respective steps defined in (4.6) and (4.7). The reconstruction then again takes
the rest of the program starting at index 1, but replaces the first instruction inside it
by Set local 1, as specified by the current c d value. The final result will then be the
following:

[ (4.13)
$C 5,

$C 5,

$Set local 1

$Nop

]

Labels

As soon as Block, Loop and If instructions are present in the program, reconstruction
becomes significantly more involved. The abstract idea of combining the rest of the
program starting at the program counter with the value stack contents is still being
followed. The difference now is that the program counter may point inside a nested
instruction list as part of one of these control flow instructions and thus the entire list
can not simply be split at this position anymore.

Instead, in accordance with the reduction relation, the control flow instructions
forming the chain that the program counter currently points into are transformed
into appropriate Labels. Ignoring the value stack for a moment, the contents of these
labels are then simply the rest of the respective sub-lists at the respective positions. For
example, the skeleton for reconstructing the following program at program counter 4
would look like this:

[ (4.14)
0 C 13,

1 C 34,

2 Block ([T_i32] _> [T_i32]) [

3 Get local 0

4 Binop Add

5 ],

6 Drop

7 ]

[ (4.15)

?

Label 1 [] [

?

$Binop Add

],

$Drop

]

Finally, the question arises how to distribute the value stack over these labels correctly
to fill the indicated gaps. The block rule from figure 3.3 dictates that when when a
Block is entered and transformed into a Label, exactly n labels are moved from before
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the Block into the label, where n is the number of arguments given by the Block’s type.
This information alone however is not sufficient because it only provides the number
of constants inside the label directly after it has been entered, but the state may have
already stepped further, such that the number could have changed. In our example,
the Get local instruction would have raised this number from 1 to 2.

The solution is to walk over every single instruction from the function start to the
program counter and keep track of the number vs n of stack values that are expected in
the current label. At the point where a control flow instruction is descended into, this
value is split up according to the given type, resulting in the final number of constants
that should be taken from the tail of the stack list and put directly before the generated
label, as well as the vs n value to be tracked further into the inner list. When the final
program counter is hit, vs n itself is the number of constants to put there.

This kind of tracking in our program (4.14) would yield the following results:

[ vs n = 0 (4.16)
0 C 13, +1 ⇒ vs n = 1
1 C 34, +1 ⇒ vs n = 2
2 Block ([T_i32] _> [T_i32]) [ 1 arg ⇒ outside = vs n - 1 = 1; vs n = 1
3 Get local 0 +1 ⇒ vs n = 2
4 Binop Add

5 ],

6 Drop

7 ]

From this analysis, we have determined that, starting from the tail of the stack, one
value should be put before the label and two inside of it. Now assuming the value
stack at the program counter 4 is [0, 34, 13], we get the following reconstruction by
completing the skeleton from (4.15):

[ (4.17)
$C 13

Label 1 [] [

$C 34

$C 0

$Binop Add

],

$Drop

]

Following the respective reduction rules, this is indeed the correct result.
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4.3 Skipping over Constants

In section 4.0.1, we have discussed two issues that may prevent a one-to-one correspon-
dence between interpreter steps and reductions. While (4.1) has already been solved by
how the interpreter is implemented, (4.2) is still open.

The only case where multiple iterations of c step are necessary to replicate a single
reduction is stepping over constant instructions as elaborated in section 4.1.3. For
example, let us consider the following program, along with its reconstruction for an
empty value stack at program counter 0:

[ (4.18)
0 C 32,

1 C 10,

2 Binop Add

3 ]

[ (4.19)
$C 32,

$C 10,

$Binop Add

]

Now we let our interpreter take two steps on this state. The program counter will be
2 and the value stack will be [10, 32]. When this is reconstructed, we still get the
exact same result as above. In contrast, reduction will automatically detect the Binop

instruction with its two preceding constant instructions and execute the addition in one
step. This prevents us from stating that any reduction on a reconstruction is reproduced
by a single application of c step.

We solve this issue by introducing a new stepping function that does not share this
property. In particular, the new function c step nc, shown in figure 4.8, simply steps
over all available constants immediately before applying one final c step.

With the amount of constants to be stepped over before reaching a different instruc-
tion or the end of the program being always finite, properties on c step can be lifted to
c step nc by induction on this list of constants.

function c_step_nc :: c_state ⇒ c_state set where
c_step_nc state = (

if c_at_const state then

case s_fetch (c_s state) (c_pc state) of (FB (C v)) ⇒
c_step_nc (c_step_const v state)

else

c_step state)

Figure 4.8: Extended stepping function to skip over any available constants. In contrast
to c state, this behavior always corresponds exactly to applying a single
reduction rule.
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4.4 Completeness Proof

We now want to prove that our interpreter is able to replicate any possible sequence of
reductions on the reconstruction of a given state, as previously illustrated in figure 4.1.
Formally, for a given state :: c state, we assume:

(|c_s state; f0; c_es state|) ; (|reduced_s; f1; reduced_es|) (4.20)

Having c step nc, we are able to also formally state the goal that we eventually want to
prove:

∃ state’. c_s state’ = reduced_s ∧ (4.21)
c_es state’ = reduced_es ∧
state’ ∈ c_step_nc state

In words: there is some state’ :: c state that can be reached by c step nc and also
has the same reconstruction as given by the assumed reduction.

4.4.1 Induction over WebAssembly Programs

Very frequently, we will have to show a property for either an entire list of instructions
or for a program counter into such a list. This is often only possible by induction over
the structure of the program, showing first that the property holds for example for
the empty program and extending this to arbitrary programs. Because of the tree-like
structure of WebAssembly, classic structural induction over neither the list nor the b e

type suffices.
Instead, we introduce multiple dedicated induction rules for these cases. They

slightly differ in their purpose but the overall structure of all of them can be informally
described as the following:

• If P holds for program counter 0 in bs :: b e list

• and

– assuming P holds for program counter pc in bbs :: b e list,

– P also holds for the program counter that points to the same relative position
in bbs in any of

* [Block bbs, ...],

* [Loop bbs, ...],

* [If bbs , ...]

* and [If bbs, ...]
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• and

– assuming P holds for program counter pc in bs :: b e list,

– P also holds for the program counter that points to the same relative position
in bs in any [b] @ bs

• then P holds for any program counter pc in any bs :: b e list.

4.4.2 Local Completeness

As a basis for proving completeness on arbitrary states, we first restrict ourselves to a
single, local call frame. In particular, we make the following assumptions on a given
state :: c state:

1. state has not terminated yet.

2. The call stack is empty.

Cause of the Reduction

We want to learn more about the contents of state. Apart from our local restrictions,
this depends entirely on the reduction rule and premises that initially induced (4.20).
Thus, rule inversion on the inductively defined reduction relation is the approach to
take.

Unfortunately, due to the behavior described in section 3.2, the derivation that caused
the reduction may contain arbitrarily long chains of applications of the label rule
shown in figure 3.3. This is rather inconvenient since rule inversion of the reduction
relation in its current form would strictly require a possibly complex induction to be
able to fully reason about any possible derivation.

In order to avoid this and ease our proof work, we define an alternative reduction
relation (|s;f;es|) ;| (|s;f;es’|), which is defined exactly in the same way as the
original one, but with the label rule removed. The leftover rules are all purely syntax-
directed and thus provide a good basis for further reasoning about the structure of
their inputs. Apart from the local rule considering the contents of a Frame instruction,
it also contains no recursion anymore and we thus call it ”atomic reduction”.

We are then able to prove by a relatively simple induction over the original reduction
relation that any reduction may also be traced back in the form of a single atomic
reduction lifted to the full context by Lfilled. This lifting could be seen also as a single
application of the label rule:

(|s;f;les|) ; (|s’;f’;reduced les|)
reduce atomic

Lfilled k lholed es’ reduced les

Lfilled k lholed es les ∧
∃ es es’ k lholed. (|s;f;es|) ;| (|s’;f’;es’|) ∧ (4.22)

35



4 Interpreter

[Frame n f [ ]]c es state =

[Label n [] [ ]]
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Figure 4.9: Illustration of the relationship between current and final instruction lists, as
well as the reductions established for them.

Note that les and reduced les are not equal to c es state and reduced es, but contained
inside of them, respectively, with a Frame and Label instruction wrapped around. This
is a consequence of the WebAssembly frame structure and the relevant relationships are
illustrated in figure 4.9. However, each of them is uniquely defined by their wrapped
or unwrapped counterpart.

With this atomic reduction being available, a rule inversion without induction on it
gives us meaningful results. For example, from the inverted binop Some rule, we obtain
constants v1, v2 and v, as well as a binary operation type op such that:

es = [$C v1, $C v2, $Binop op] (4.23)
app binop op v1 v2 = Some v

es’ = [$C v]

Since les from (4.22) in our case was the list that our own reconstruction algorithm has
generated from state, we can derive important properties that state must have had in
order for les to be Lfilled in the sense of Lfilled k lholed es les.

Specifically, from Lfilled k lholed es les and es’ = [$C v], we are able to show by
induction over the code of the current function in state that, after any constants have
been skipped by c step nc:

• [v2, v1] is a prefix of val stack state. (4.24)

• c pc state points exactly to a Binop op instruction.
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Equality of the Final State

With this amount of information, we can fully evaluate c step nc state and obtain a
state’ that already fulfills the state’ ∈ c_step_nc state goal from (4.21). This leaves
c_s state’ = reduced_s and c_es state’ = reduced_es to prove.

Due to how all reduction rules are specified, the structure of reduced s is given
already by the inversion of the atomic reduction. The same can be said about c s

state’ because of how our stepping is implemented. Thus, c_s state’ = reduced_s

may generally be shown for all individual cases by simplification and similarly trivial
methods.

For showing that c_es state’ = reduced_es, we show that stepped les = reduced les

where stepped les denotes the appropriate reconstructed sub-list of c es state. At this
point, the only thing we know about reduced les is Lfilled k lholed es’ reduced les

from (4.22).
From the deterministic nature of Lfilled expressed in (3.4), we do know however that

if for any other xes, Lfilled k lholed es’ xes holds, then xes = reduced les. Thus,
we approach the problem by trying to show Lfilled k lholed es’ stepped les. Notice
that these k and lholed are the same that are used in Lfilled k lholed es les. Both les

and stepped les are results of reconstruction on state and state’, respectively, with the
only differences between the two states being known from how we evaluated c step nc

state. By using this knowledge and Lfilled k lholed es les as a premise, we are able
to prove Lfilled k lholed es’ stepped les for all individual, possible reduction cases
by induction over the function code.

With this aspect being shown, we have proven completeness, given the restriction to
an empty call stack.

4.4.3 Completeness for Arbitrary Call Stacks

We can now extend our findings to states with arbitrarily long call stacks. This is
done by induction over the call stack state list by starting with the empty list and
appending a single element at the tail in every step. In WebAssembly terms, this
corresponds to taking the current execution state of a program and putting it in a larger
context, as if it was called from another function, rather than having been invoked
directly. For the induction, we can use our completeness theorem for the empty call
stack as the base case.

In the induction step, we may then assume that completeness holds for any state
with a specific call stack cs and then show that it also holds for a state with call stack cs

@ [(pc, locs, vs)]. So, we are given the following premises in order to show (4.21):

call stack state = cs @ [(pc, locs, vs)] (4.25)
(|c_s state; f0; c_es state|) ; (|reduced_s; f1; reduced_es|) (4.26)
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From the way our reconstruction illustrated in figure 4.7 works, we know that a Frame

instruction representing the entire call stack up to the end of cs is contained within c es

state. Let istate now denote state(|call stack := cs|). In fact, this contained Frame is
now exactly the reconstruction c es istate.

This information about the structure of c es state lets us trace back the reduction
that happened in (4.26) to the reduction of this inner Frame by ruling out any derivation
that could not possibly match this structure. By doing so, we obtain f’ and reduced ies

such that:

(|c_s istate; f; c_es istate|) ; (|reduced_s; f’; reduced_ies|) (4.27)

where f is derived from (pc, locs, vs) and reduced ies is contained within reduced es

the same way that c es istate is contained within c es state. We now notice that
istate’s call stack in combination with (4.27) perfectly matches our induction hypothe-
sis, which is the completeness of states with call stack cs, so we can obtain a stepped
state istate’ to match reduced ies:

c_s istate’ = reduced_s (4.28)
c_es istate’ = reduced_ies

istate’ ∈ c_step_nc istate

We then analyze all possible ways that c step nc state and c step nc istate could
have been evalued. Because of the fact that state and istate differ only in their call
stack, we find out that we can always obtain a state’ such that:

c_s state’ = reduced_s (4.29)
state’ ∈ c_step_nc state

and in addition c es istate’ is contained within c es state’ the same way that c es

istate is contained in c es state. We previously noticed that this exact property is
also shared by reduced ies = c es istate’ within reduced es. Thus, again making use
of the determinism of Lfilled (which established these relationships), we are able to
prove that reduced es = c es state.

Finally, combining this with (4.29), completeness in the induction step is finished by
stating:

c_s state’ = reduced_s (4.30)
c_es state’ = reduced_es

state’ ∈ c_step_nc state

Thus, as a result of the entire induction, completeness has been shown for arbitrary
states. �
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4.5 Caveats

Inside the above proofs in Isabelle, there are various cases where the behavior of how
many elements are on the stack have to follow certain rules. For example, when a
function returns to its outer frame, its return values will be pushed to the outer stack.
Then, in the reconstruction, these return values must end up in exactly the correct spot
where the inner function was initially invoked. This however can only guaranteed if
the stack has the correct size, such that the constants will be distributed over all Labels
in the expected manner.

In order to guarantee these properties, the interpreter tracks some invariants that
are proven to be preserved by stepping, such as that the stack size always matches the
expected number at the current program counter. It makes use of typing, as introduced
in section 3.3, which guarantees for example that a stack underflow will never happen,
to carry out these proofs.

In its current form however, it only reasons about the pure number of elements on
the stack, but not their individual types. As a consequence, there are two specific cases
where invariant preservation in its original form could not be shown:

1. Host functions, i.e. external functions that may be called from inside WebAssem-
bly, only have a well-defined stack behavior if all argument types match exactly
their specified type.

2. The Set global instruction can break well-typedness of a store if its operand value
has an incorrect type.

As host functions in the mechanization are defined by axioms on an uninterpreted
constant, we have added a respective axiom that guarantees the expected stack behavior
also for only the premise of being given the correct number of arguments, independently
of their types.

For the Set global instruction, a runtime type check was introduced in the respective
reduction rule and the interpreter, such that no steps breaking well-typedness can be
performed anymore.

Since we are only concerned with programs that are fully well-typed, both additions
however are not necessary in theory, as the typing relation already provides the
appropriate preconditions. Proving this is plausible, will however require significant
additional effort, since all individual types for the entire call stack will have to be
tracked as part of the invariant, rather than only their number.
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5.1 Breakdown

The entire project for this thesis, which was developed over a course of six months,
weighs in at about 19000 lines of Isabelle code. Splitting it up by individual files in
the session, the distribution of this amount over different aspects of the project is the
shown in figure 5.1. It indicates that the most significant portion of work was spent on
the completeness proof, along with any definitions and properties that are necessary
for it, such as reconstruction.

5.2 Results

By specifying and implementing integer operations, we have added one of the last
missing pieces to the WebAssembly formalization from Watt [Wat18] to provide a
mechanization of the entire WebAssembly standard. Our work on this has been merged
into the official repository as of commit 2e2fa63 [MW21]. It is now used as part of the
sound WebAssembly Interpreter inside this repository and has replaced the previous,
unverified OCaml variant.

Our theory Sshiftr.thy implements various auxiliary lemmas about the right shift
of words interpreted as signed numbers. Analogous lemmas for shifts of unsigned
numbers had already been available as part of the official Word Library [Bee+16],
but these specific ones had still been missing. Our lemmas have been merged into
the development version of the Archive of Formal Proofs, which hosts the library, in
commit 556e4a005c15 [KM21].

Finally, we have developed an interpreter for the WebAssembly language that is
implemented as a classic stack machine and have proven that it can replicate any
execution allowed by the WebAssembly specification on a well-typed program. This is
not only of high significance for verified analysis of WebAssembly, but also shows that
this concept, which is the common approach used in real-world interpreters such as
Fizzy [BMB], indeed can cover the entire formal WebAssembly specification.

5.3 Future Work

With integer operations being finished, the only other missing piece of the WebAssembly
mechanization are float types and operations. These are represented in WebAssembly
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Auxiliaries
38 lines List All Pairs.thy Predicate on lists necessary for inter-

preter invariants
1170 lines Wasm Properties2.thy Various added properties of

WebAssembly-specifics

Integer Operations
133 lines Sshiftr.thy Lemmas for signed right shifts previ-

ously missing from the Word Library
108 lines Power Sum.thy Generic lemmas about sums of powers,

such as the base two representation of a
number

+469 lines Wasm Type Abs.thy Formalization of the WebAssembly inte-
ger specifications

779 lines Wasm Type Word.thy Generic implementation of WebAssem-
bly integers using the Word Library

Interpreter
1174 lines Base.thy Elementary definitions for all parts of

the interpreter
470 lines Interpreter.thy Interpreter state and stepping

2019 lines Interpreter Properties.thy General properties of the interpreter
1684 lines Stack.thy Stack behavior and properties concluded

from typing
347 lines Descend.thy Properties of the interpreter for c d 6=

D None

210 lines Skip.thy Skipping over entire instructions, for
trapping behavior

2411 lines State Valid.thy Invariants and their preservation
2143 lines Reconstruct.thy Reconstruction from interpreter state to

administrative instruction lists
946 lines Step NC.thy Stepping function c step nc with one-to-

one correspondence to reduction
110 lines Reduce Atomic.thy Reduction relation with label rule re-

moved
4912 lines Completeness Local.thy Completeness for an empty call stack

401 lines Completeness.thy Completeness for arbitrary call stacks

Figure 5.1: Breakdown of the developed theory files with their lengths and content
description.
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5 Conclusion

by the two types f32 and f64, which both share most of the same specification, similarly
to i32 and i64. Thus, the most natural way to implement them would be to take the
same bit width-agnostic approach that we used for integers.

Our interpreter opens up many possibilities in the sense of analysis. For example,
a generic Abstract Interpretation framework could now be implemented on top of it,
for the various use-cases described in chapter 1. In particular, one possible practical
application would be to develop a framework similar to Binaryen [Web21a], but fully
verified. Inside of it, the Abstract Interpreter would be able to overapproximate all
possible values of variables. Based on this information, for example, If instructions
whose conditions are guaranteed to evaluate to either True or False, could be simplified
to a single block. This could replicate Binaryen’s DeadCodeElimination pass. The
resulting tool may then be used as a reliable optimizer of WebAssembly code before
shipping.

In addition, as a counterpart to completeness, a proof for soundness of the interpreter
could be approached. The specific goal to prove would be that every step the interpreter
can take is also covered by a WebAssembly reduction rule. One could make use of
the existing reconstruction algorithms for this. A convenient aspect is that the way
the interpreter performs its stepping is defined as concrete equations rather than an
inductive predicate. Thus, no complex rule inversions and inductions on the reduction
rule should be necessary for this. Once the soundness proof is finished, in combination
with the completeness proof, it would be shown that the interpreter does not only
underapproximate or overapproximate WebAssembly, but implements it exactly.

Moreover, a soundness proof is also the necessary component to derive a verified,
executable interpreter for real-world applications. Such an interpreter could be easily
created by picking a single case from every non-deterministic step in our interpreter,
and only executing that. Thus, the interpreter would be fully deterministic. One
major advantage of such an interpreter based on our stack- and program counter-
based approach over for example the verified interpreter by Watt [Wat18] is that no
additional memory is needed to track the current reduction state of the program. In the
extreme case, it could even be possible to load a raw WebAssembly binary and let the
program counter point directly into this binary, as code is being treated as immutable.
It is thus a good basis for further refinement towards highly-optimized WebAssembly
interpretation.
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